Snowflake SQL Best Practices Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
This guide provides SQL best practices for Snowflake, covering query optimization, data modeling patterns, and common SQL patterns for analytics workloads. Following these practices ensures efficient, maintainable, and performant SQL code.
2. Query Optimization
2.1 Filter Early and Often
-- BAD: Filter late in the query
SELECT *
FROM large_table l
JOIN dimension_table d ON l.key = d.key
WHERE l.date = '2025-01-29';

-- GOOD: Filter early with CTEs or subqueries
WITH filtered_data AS (
 SELECT *
 FROM large_table
 WHERE date = '2025-01-29' -- Filter first
)
SELECT f.*, d.*
FROM filtered_data f
JOIN dimension_table d ON f.key = d.key;

2.2 Use Appropriate Data Types
-- Use NUMBER for numeric operations
CREATE TABLE sales (
 sale_id NUMBER(38,0), -- INTEGER equivalent
 amount NUMBER(18,2), -- DECIMAL for money
 quantity NUMBER(10,0), -- Small integers
 discount_pct NUMBER(5,4), -- Percentages
 sale_date DATE, -- DATE not VARCHAR
 sale_timestamp TIMESTAMP_NTZ, -- TIMESTAMP not VARCHAR
 customer_id VARCHAR(50), -- VARCHAR with appropriate length
 is_online BOOLEAN -- BOOLEAN not VARCHAR/NUMBER
);

-- Avoid implicit conversions
-- BAD
SELECT * FROM orders WHERE order_id = '12345'; -- If order_id is NUMBER

-- GOOD
SELECT * FROM orders WHERE order_id = 12345;

2.3 Leverage Pruning
-- Snowflake automatically prunes micro-partitions
-- Queries on clustered columns are faster

-- Check pruning effectiveness
SELECT *
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY_BY_SESSION())
WHERE QUERY_TEXT LIKE '%my_query%'
ORDER BY START_TIME DESC LIMIT 1;
-- Look at PARTITIONS_SCANNED vs PARTITIONS_TOTAL

-- Use selective predicates
SELECT * FROM sales WHERE sale_date = '2025-01-29'; -- Good pruning
SELECT * FROM sales WHERE YEAR(sale_date) = 2025; -- Less effective

3. Join Patterns
3.1 Join Best Practices
-- Specify join type explicitly
SELECT o.*, c.customer_name
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id;

-- Use table aliases for clarity
SELECT
 o.order_id,
 o.order_date,
 c.customer_name,
 p.product_name,
 oi.quantity,
 oi.unit_price
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id;

-- Prefer INNER JOIN over WHERE for joins
-- BAD (old syntax)
SELECT * FROM orders o, customers c WHERE o.customer_id = c.customer_id;

-- GOOD (explicit join)
SELECT * FROM orders o INNER JOIN customers c ON o.customer_id = c.customer_id;

3.2 Handling NULL in Joins
-- LEFT JOIN with NULL handling
SELECT
 c.customer_id,
 c.customer_name,
 COALESCE(SUM(o.amount), 0) AS total_orders
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.customer_name;

-- Use IS NOT DISTINCT FROM for NULL-safe comparisons
SELECT *
FROM table1 t1
JOIN table2 t2 ON t1.key IS NOT DISTINCT FROM t2.key;

4. Aggregation Patterns
4.1 GROUP BY Best Practices
-- Use column positions for long GROUP BY lists
SELECT
 DATE_TRUNC('month', order_date) AS order_month,
 region,
 product_category,
 COUNT(*) AS order_count,
 SUM(amount) AS total_amount
FROM orders
GROUP BY 1, 2, 3; -- Reference by position

-- GROUPING SETS for multiple aggregation levels
SELECT
 COALESCE(region, 'ALL') AS region,
 COALESCE(category, 'ALL') AS category,
 SUM(amount) AS total_amount,
 GROUPING(region) AS is_region_total,
 GROUPING(category) AS is_category_total
FROM sales
GROUP BY GROUPING SETS (
 (region, category),
 (region),
 (category),
 ()
);

-- ROLLUP for hierarchical aggregations
SELECT
 COALESCE(region, 'TOTAL') AS region,
 COALESCE(category, 'SUBTOTAL') AS category,
 SUM(amount) AS total_amount
FROM sales
GROUP BY ROLLUP (region, category);

4.2 Window Functions
-- Ranking functions
SELECT
 customer_id,
 order_date,
 amount,
 ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date DESC) AS order_rank,
 RANK() OVER (PARTITION BY customer_id ORDER BY amount DESC) AS amount_rank,
 DENSE_RANK() OVER (ORDER BY amount DESC) AS dense_amount_rank
FROM orders;

-- Running calculations
SELECT
 order_date,
 amount,
 SUM(amount) OVER (ORDER BY order_date ROWS UNBOUNDED PRECEDING) AS running_total,
 AVG(amount) OVER (ORDER BY order_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS rolling_7_avg,
 LAG(amount, 1) OVER (ORDER BY order_date) AS prev_amount,
 LEAD(amount, 1) OVER (ORDER BY order_date) AS next_amount
FROM daily_sales;

-- QUALIFY for filtering window results
SELECT
 customer_id,
 order_id,
 order_date,
 amount
FROM orders
QUALIFY ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date DESC) = 1;

5. Semi-Structured Data
5.1 Working with VARIANT
-- Create table with VARIANT column
CREATE TABLE events (
 event_id VARCHAR,
 event_data VARIANT,
 received_at TIMESTAMP_NTZ
);

-- Insert JSON data
INSERT INTO events (event_id, event_data, received_at)
SELECT
 'evt_001',
 PARSE_JSON('{
 "event_type": "page_view",
 "user_id": "u123",
 "properties": {
 "page": "/home",
 "referrer": "google.com"
 },
 "items": [
 {"id": "item1", "qty": 2},
 {"id": "item2", "qty": 1}
]
 }'),
 CURRENT_TIMESTAMP();

-- Query VARIANT data
SELECT
 event_id,
 event_data:event_type::VARCHAR AS event_type,
 event_data:user_id::VARCHAR AS user_id,
 event_data:properties.page::VARCHAR AS page,
 event_data:properties.referrer::VARCHAR AS referrer
FROM events;

-- Flatten arrays
SELECT
 e.event_id,
 e.event_data:event_type::VARCHAR AS event_type,
 f.value:id::VARCHAR AS item_id,
 f.value:qty::INTEGER AS quantity
FROM events e,
LATERAL FLATTEN(input => e.event_data:items) f;

5.2 JSON Manipulation
-- Build JSON objects
SELECT
 customer_id,
 OBJECT_CONSTRUCT(
 'name', customer_name,
 'email', email,
 'orders', ARRAY_AGG(OBJECT_CONSTRUCT('id', order_id, 'amount', amount))
) AS customer_json
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.customer_name, c.email;

-- Update VARIANT values
UPDATE events
SET event_data = OBJECT_INSERT(event_data, 'processed', TRUE)
WHERE event_id = 'evt_001';

6. Common Patterns
6.1 Date Intelligence
-- Date dimension query patterns
SELECT
 d.date_key,
 d.year,
 d.quarter,
 d.month,
 d.week,
 d.day_of_week,
 d.is_weekend,
 d.is_holiday,
 SUM(f.amount) AS total_sales
FROM fact_sales f
JOIN dim_date d ON f.date_key = d.date_key
WHERE d.year = 2025
GROUP BY 1, 2, 3, 4, 5, 6, 7, 8;

-- Year-over-year comparison
SELECT
 current_year.month,
 current_year.total_sales AS this_year,
 prior_year.total_sales AS last_year,
 (current_year.total_sales - prior_year.total_sales) / prior_year.total_sales * 100 AS yoy_growth
FROM (
 SELECT MONTH(order_date) AS month, SUM(amount) AS total_sales
 FROM orders WHERE YEAR(order_date) = 2025 GROUP BY 1
) current_year
LEFT JOIN (
 SELECT MONTH(order_date) AS month, SUM(amount) AS total_sales
 FROM orders WHERE YEAR(order_date) = 2024 GROUP BY 1
) prior_year ON current_year.month = prior_year.month;

6.2 SCD Type 2
-- SCD Type 2 merge pattern
MERGE INTO dim_customer_history AS target
USING (
 SELECT
 customer_id,
 customer_name,
 email,
 address,
 MD5(customer_name || email || address) AS row_hash
 FROM staging.customers
) AS source
ON target.customer_id = source.customer_id
 AND target.is_current = TRUE
WHEN MATCHED AND target.row_hash != source.row_hash THEN
 UPDATE SET
 is_current = FALSE,
 end_date = CURRENT_DATE() - 1
WHEN NOT MATCHED THEN
 INSERT (customer_id, customer_name, email, address, row_hash, start_date, end_date, is_current)
 VALUES (source.customer_id, source.customer_name, source.email, source.address, source.row_hash, CURRENT_DATE(), '9999-12-31', TRUE);

-- Insert new version for updated records
INSERT INTO dim_customer_history
SELECT
 s.customer_id, s.customer_name, s.email, s.address,
 MD5(s.customer_name || s.email || s.address),
 CURRENT_DATE(), '9999-12-31', TRUE
FROM staging.customers s
JOIN dim_customer_history h ON s.customer_id = h.customer_id
WHERE h.is_current = FALSE
 AND h.end_date = CURRENT_DATE() - 1;

7. Performance Tips
7.1 Query Optimization ChecklistCheckActionFilter on clustered columnsEnables partition pruningAvoid SELECT *Select only needed columnsUse appropriate joinsChoose INNER vs LEFT based on needLimit result setsUse LIMIT for explorationAvoid correlated subqueriesRewrite as joinsUse CTEs for readabilityBut don't over-nest
7.2 Query Profile Analysis
-- Enable query profiling
ALTER SESSION SET USE_CACHED_RESULT = FALSE; -- For testing

-- After running query, check profile:
-- 1. Look for data spillage (memory to disk)
-- 2. Check partition pruning ratio
-- 3. Identify slow operators
-- 4. Check for data skew in joins

-- View query history with performance metrics
SELECT
 QUERY_ID,
 QUERY_TEXT,
 TOTAL_ELAPSED_TIME/1000 AS elapsed_seconds,
 BYTES_SCANNED/1024/1024/1024 AS gb_scanned,
 ROWS_PRODUCED,
 PARTITIONS_SCANNED,
 PARTITIONS_TOTAL,
 ROUND(PARTITIONS_SCANNED/PARTITIONS_TOTAL * 100, 2) AS pct_partitions_scanned
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY())
WHERE WAREHOUSE_NAME = 'ANALYTICS_WH'
 AND START_TIME >= DATEADD('hour', -24, CURRENT_TIMESTAMP())
ORDER BY TOTAL_ELAPSED_TIME DESC
LIMIT 20;

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

