Snowflake Access Control & Security Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerSecurity & Governance Team
1. Executive Summary
This guide provides comprehensive patterns for implementing access control in Snowflake, covering role-based access control (RBAC), row-level security, column-level security (dynamic data masking), and tag-based governance. Proper access control ensures data security while enabling appropriate data access.
2. Role-Based Access Control (RBAC)
2.1 System-Defined Roles
┌───┐
│ SNOWFLAKE SYSTEM ROLE HIERARCHY │
├───┤
│ │
│ ACCOUNTADMIN │
│ (Highest privilege - use sparingly) │
│ │ │
│ ┌──────────────┼──────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ SECURITYADMIN SYSADMIN USERADMIN │
│ │ │ │ │
│ │ │ └─► Create/manage users & roles│
│ │ └─► Create/manage objects (DB, schema, etc.) │
│ └─► Manage grants, network policies, security │
│ │ │
│ ▼ │
│ PUBLIC │
│ (All users automatically inherit) │
│ │
└───┘

2.2 Custom Role Hierarchy
-- Create functional roles (what users DO)
CREATE ROLE data_engineer;
CREATE ROLE data_analyst;
CREATE ROLE data_scientist;
CREATE ROLE report_viewer;

-- Create access roles (what users can ACCESS)
CREATE ROLE raw_data_reader;
CREATE ROLE staging_data_full;
CREATE ROLE analytics_data_reader;
CREATE ROLE pii_data_access;

-- Build hierarchy: functional roles inherit from access roles
GRANT ROLE raw_data_reader TO ROLE data_engineer;
GRANT ROLE staging_data_full TO ROLE data_engineer;
GRANT ROLE analytics_data_reader TO ROLE data_analyst;
GRANT ROLE analytics_data_reader TO ROLE data_scientist;
GRANT ROLE analytics_data_reader TO ROLE report_viewer;

-- PII access is separate - granted explicitly
GRANT ROLE pii_data_access TO ROLE data_scientist; -- Data scientists can see PII

-- Grant functional roles to SYSADMIN
GRANT ROLE data_engineer TO ROLE SYSADMIN;
GRANT ROLE data_analyst TO ROLE SYSADMIN;
GRANT ROLE data_scientist TO ROLE SYSADMIN;
GRANT ROLE report_viewer TO ROLE SYSADMIN;

-- Assign users to functional roles
GRANT ROLE data_analyst TO USER john_doe;
GRANT ROLE data_engineer TO USER jane_smith;

2.3 Object Privileges
-- Database privileges
GRANT USAGE ON DATABASE analytics_db TO ROLE analytics_data_reader;
GRANT CREATE SCHEMA ON DATABASE sandbox_db TO ROLE data_scientist;
GRANT ALL ON DATABASE staging_db TO ROLE data_engineer;

-- Schema privileges
GRANT USAGE ON SCHEMA analytics_db.public TO ROLE analytics_data_reader;
GRANT CREATE TABLE, CREATE VIEW ON SCHEMA staging_db.transforms TO ROLE data_engineer;
GRANT ALL ON SCHEMA sandbox_db.scratch TO ROLE data_scientist;

-- Table privileges
GRANT SELECT ON ALL TABLES IN SCHEMA analytics_db.public TO ROLE analytics_data_reader;
GRANT SELECT, INSERT, UPDATE, DELETE ON TABLE staging_db.transforms.orders TO ROLE data_engineer;

-- Future grants (auto-apply to new objects)
GRANT SELECT ON FUTURE TABLES IN SCHEMA analytics_db.public TO ROLE analytics_data_reader;
GRANT SELECT ON FUTURE VIEWS IN SCHEMA analytics_db.public TO ROLE analytics_data_reader;

-- Warehouse privileges
GRANT USAGE ON WAREHOUSE analytics_wh TO ROLE analytics_data_reader;
GRANT USAGE, OPERATE, MODIFY ON WAREHOUSE etl_wh TO ROLE data_engineer;

3. Row-Level Security (Row Access Policies)
3.1 Creating Row Access Policies
-- Create mapping table for access control
CREATE TABLE security.region_access (
 role_name VARCHAR,
 allowed_region VARCHAR
);

INSERT INTO security.region_access VALUES
 ('NA_ANALYST', 'North America'),
 ('EU_ANALYST', 'Europe'),
 ('APAC_ANALYST', 'Asia Pacific'),
 ('GLOBAL_ANALYST', 'North America'),
 ('GLOBAL_ANALYST', 'Europe'),
 ('GLOBAL_ANALYST', 'Asia Pacific');

-- Create row access policy
CREATE OR REPLACE ROW ACCESS POLICY security.region_filter
AS (region VARCHAR) RETURNS BOOLEAN ->
 CURRENT_ROLE() IN ('ACCOUNTADMIN', 'SYSADMIN', 'DATA_ADMIN')
 OR EXISTS (
 SELECT 1 FROM security.region_access
 WHERE role_name = CURRENT_ROLE()
 AND allowed_region = region
);

-- Apply policy to table
ALTER TABLE analytics_db.facts.sales
 ADD ROW ACCESS POLICY security.region_filter ON (region);

-- Multiple conditions policy
CREATE OR REPLACE ROW ACCESS POLICY security.customer_segment_filter
AS (segment VARCHAR, is_confidential BOOLEAN) RETURNS BOOLEAN ->
 -- Admins see everything
 CURRENT_ROLE() IN ('ACCOUNTADMIN', 'SYSADMIN', 'DATA_ADMIN')
 OR (
 -- Regular users see non-confidential or their segment
 NOT is_confidential
 OR EXISTS (
 SELECT 1 FROM security.user_segments
 WHERE user_name = CURRENT_USER()
 AND segment_name = segment
)
);

-- Apply to table
ALTER TABLE analytics_db.dimensions.customers
 ADD ROW ACCESS POLICY security.customer_segment_filter ON (segment, is_confidential);

3.2 Managing Row Access Policies
-- View policies
SHOW ROW ACCESS POLICIES;

-- View policy details
DESCRIBE ROW ACCESS POLICY security.region_filter;

-- View policy references
SELECT *
FROM TABLE(INFORMATION_SCHEMA.POLICY_REFERENCES(
 POLICY_NAME => 'security.region_filter'
));

-- Remove policy from table
ALTER TABLE analytics_db.facts.sales
 DROP ROW ACCESS POLICY security.region_filter;

-- Drop policy
DROP ROW ACCESS POLICY security.region_filter;

4. Column-Level Security (Dynamic Data Masking)
4.1 Creating Masking Policies
-- Email masking policy
CREATE OR REPLACE MASKING POLICY security.email_mask
AS (val VARCHAR) RETURNS VARCHAR ->
 CASE
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'PII_DATA_ACCESS') THEN val
 ELSE REGEXP_REPLACE(val, '(^[^@]{2})[^@]*(@.*)', '\\1***\\2')
 END;

-- Phone masking policy
CREATE OR REPLACE MASKING POLICY security.phone_mask
AS (val VARCHAR) RETURNS VARCHAR ->
 CASE
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'PII_DATA_ACCESS') THEN val
 ELSE CONCAT('***-***-', RIGHT(val, 4))
 END;

-- SSN masking policy (always partially masked)
CREATE OR REPLACE MASKING POLICY security.ssn_mask
AS (val VARCHAR) RETURNS VARCHAR ->
 CASE
 WHEN CURRENT_ROLE() = 'ACCOUNTADMIN' THEN val
 WHEN CURRENT_ROLE() = 'PII_DATA_ACCESS' THEN CONCAT('***-**-', RIGHT(val, 4))
 ELSE '***-**-****'
 END;

-- Numeric masking (e.g., salary)
CREATE OR REPLACE MASKING POLICY security.salary_mask
AS (val NUMBER) RETURNS NUMBER ->
 CASE
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'HR_ADMIN') THEN val
 ELSE NULL
 END;

-- Apply masking policies to columns
ALTER TABLE analytics_db.dimensions.customers
 MODIFY COLUMN email SET MASKING POLICY security.email_mask;

ALTER TABLE analytics_db.dimensions.customers
 MODIFY COLUMN phone SET MASKING POLICY security.phone_mask;

ALTER TABLE hr_db.employees
 MODIFY COLUMN ssn SET MASKING POLICY security.ssn_mask;

ALTER TABLE hr_db.employees
 MODIFY COLUMN salary SET MASKING POLICY security.salary_mask;

4.2 Conditional Masking
-- Masking based on another column value
CREATE OR REPLACE MASKING POLICY security.conditional_amount_mask
AS (val NUMBER, customer_type VARCHAR) RETURNS NUMBER ->
 CASE
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'FINANCE_ADMIN') THEN val
 WHEN customer_type = 'INTERNAL' THEN val -- Internal customers visible
 ELSE ROUND(val, -3) -- Round to nearest 1000 for others
 END;

-- Apply conditional policy
ALTER TABLE analytics_db.facts.transactions
 MODIFY COLUMN amount SET MASKING POLICY security.conditional_amount_mask
 USING (amount, customer_type);

5. Tag-Based Governance
5.1 Creating and Using Tags
-- Create tag for data classification
CREATE TAG governance.data_classification
 ALLOWED_VALUES 'PUBLIC', 'INTERNAL', 'CONFIDENTIAL', 'RESTRICTED';

CREATE TAG governance.pii_type
 ALLOWED_VALUES 'NONE', 'DIRECT', 'QUASI', 'SENSITIVE';

CREATE TAG governance.data_owner;
CREATE TAG governance.data_steward;
CREATE TAG governance.retention_days;

-- Apply tags to objects
ALTER TABLE analytics_db.dimensions.customers
 SET TAG governance.data_classification = 'CONFIDENTIAL',
 governance.pii_type = 'DIRECT',
 governance.data_owner = 'customer_analytics_team',
 governance.retention_days = '2555'; -- 7 years

-- Apply tags to columns
ALTER TABLE analytics_db.dimensions.customers
 MODIFY COLUMN email SET TAG governance.pii_type = 'DIRECT';

ALTER TABLE analytics_db.dimensions.customers
 MODIFY COLUMN customer_segment SET TAG governance.pii_type = 'QUASI';

-- Query tags
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TAG_REFERENCES(
 'analytics_db.dimensions.customers',
 'TABLE'
));

5.2 Tag-Based Masking Policies
-- Create masking policy that uses tags
CREATE OR REPLACE MASKING POLICY security.tag_based_string_mask
AS (val VARCHAR) RETURNS VARCHAR ->
 CASE
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'DATA_ADMIN') THEN val
 WHEN SYSTEM$GET_TAG_ON_CURRENT_COLUMN('governance.pii_type') = 'DIRECT'
 AND CURRENT_ROLE() NOT IN ('PII_DATA_ACCESS') THEN '***MASKED***'
 WHEN SYSTEM$GET_TAG_ON_CURRENT_COLUMN('governance.pii_type') = 'QUASI'
 AND CURRENT_ROLE() NOT IN ('PII_DATA_ACCESS') THEN LEFT(val, 2) || '***'
 ELSE val
 END;

-- Apply tag-based policy
ALTER TABLE analytics_db.dimensions.customers
 MODIFY COLUMN email SET MASKING POLICY security.tag_based_string_mask;

6. Secure Views
6.1 Creating Secure Views
-- Secure view (query definition hidden from non-owners)
CREATE OR REPLACE SECURE VIEW analytics_db.reports.customer_summary_secure AS
SELECT
 customer_id,
 customer_name,
 region,
 customer_segment,
 total_orders,
 total_spend
FROM analytics_db.dimensions.customers c
JOIN (
 SELECT customer_id, COUNT(*) AS total_orders, SUM(amount) AS total_spend
 FROM analytics_db.facts.orders
 GROUP BY customer_id
) o ON c.customer_id = o.customer_id
WHERE region IN (
 SELECT allowed_region
 FROM security.region_access
 WHERE role_name = CURRENT_ROLE()
);

-- Grant access to secure view
GRANT SELECT ON VIEW analytics_db.reports.customer_summary_secure TO ROLE data_analyst;

-- Users can query but cannot see the underlying logic
-- SHOW VIEWS will show it's SECURE
-- DESCRIBE VIEW shows columns but not SELECT statement

7. Best Practices
7.1 Access Control ChecklistPracticeDescriptionLeast privilegeGrant minimum necessary permissionsRole hierarchyUse inheritance, avoid direct user grantsSeparation of dutiesDifferent roles for different functionsRegular auditsReview access periodicallyNamed stagesControl who can access data filesSecure viewsHide query logic from end users
7.2 Audit Access
-- Query access history
SELECT
 query_start_time,
 user_name,
 role_name,
 query_type,
 query_text,
 database_name,
 schema_name
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_start_time >= DATEADD('day', -7, CURRENT_DATE())
 AND database_name = 'ANALYTICS_DB'
ORDER BY query_start_time DESC;

-- View login history
SELECT
 event_timestamp,
 user_name,
 client_ip,
 reported_client_type,
 first_authentication_factor,
 is_success
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE event_timestamp >= DATEADD('day', -30, CURRENT_DATE())
ORDER BY event_timestamp DESC;

Document ControlVersionDateAuthorChanges1.02025-01-29Security TeamInitial document
This document is maintained by the Security & Governance Team.

