Snowflake Audit & Compliance Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerSecurity & Compliance Team
1. Executive Summary
Snowflake provides comprehensive audit logging and compliance features to help organizations meet regulatory requirements. This guide covers access history, query history, login monitoring, and compliance reporting for frameworks like SOC 2, GDPR, HIPAA, and PCI-DSS.
2. Audit Architecture
┌───┐
│ SNOWFLAKE AUDIT ARCHITECTURE │
├───┤
│ │
│ USER ACTIVITY AUDIT STORAGE │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐│
│ │ │ │ ││
│ │ ┌───────────────────────┐ │ │ SNOWFLAKE.ACCOUNT_USAGE ││
│ │ │ SQL Queries │ │ │ ││
│ │ │ • SELECT statements │ │ Captured │ ┌───────────────────────┐ ││
│ │ │ • DML operations │──┼───────────►│ │ QUERY_HISTORY │ ││
│ │ │ • DDL changes │ │ │ │ (365 days) │ ││
│ │ └───────────────────────┘ │ │ └───────────────────────┘ ││
│ │ │ │ ││
│ │ ┌───────────────────────┐ │ │ ┌───────────────────────┐ ││
│ │ │ Data Access │ │ Captured │ │ ACCESS_HISTORY │ ││
│ │ │ • Table reads │──┼───────────►│ │ (365 days) │ ││
│ │ │ • Column access │ │ │ └───────────────────────┘ ││
│ │ │ • Object mutations │ │ │ ││
│ │ └───────────────────────┘ │ │ ┌───────────────────────┐ ││
│ │ │ │ │ LOGIN_HISTORY │ ││
│ │ ┌───────────────────────┐ │ Captured │ │ (365 days) │ ││
│ │ │ Authentication │──┼───────────►│ └───────────────────────┘ ││
│ │ │ • Login attempts │ │ │ ││
│ │ │ • Session starts │ │ │ ┌───────────────────────┐ ││
│ │ │ • Auth methods │ │ │ │ SESSIONS │ ││
│ │ └───────────────────────┘ │ │ │ (365 days) │ ││
│ │ │ │ └───────────────────────┘ ││
│ └─────────────────────────────┘ │ ││
│ │ ┌───────────────────────┐ ││
│ ADMINISTRATIVE ACTIONS │ │ GRANTS_TO_USERS │ ││
│ ┌─────────────────────────────┐ Captured │ │ GRANTS_TO_ROLES │ ││
│ │ • Role grants/revokes │──────────────► │ (365 days) │ ││
│ │ • User management │ │ └───────────────────────┘ ││
│ │ • Security changes │ │ ││
│ └─────────────────────────────┘ └─────────────────────────────┘│
│ │
│ RETENTION: 365 days in ACCOUNT_USAGE (can export for longer retention) │
│ │
└───┘

3. Query History Auditing
3.1 Query History Analysis
-- Recent query activity
SELECT
 query_id,
 query_text,
 database_name,
 schema_name,
 user_name,
 role_name,
 warehouse_name,
 start_time,
 end_time,
 total_elapsed_time / 1000 AS duration_seconds,
 rows_produced,
 bytes_scanned,
 query_type,
 execution_status
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY start_time DESC
LIMIT 100;

-- Failed queries investigation
SELECT
 query_id,
 query_text,
 user_name,
 role_name,
 error_code,
 error_message,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE execution_status = 'FAIL'
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Queries by specific user
SELECT
 query_id,
 query_text,
 database_name,
 query_type,
 start_time,
 total_elapsed_time / 1000 AS duration_seconds
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE user_name = 'TARGET_USER'
 AND start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- DDL changes audit
SELECT
 query_id,
 query_text,
 user_name,
 role_name,
 database_name,
 schema_name,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_type IN ('CREATE', 'ALTER', 'DROP', 'GRANT', 'REVOKE')
 AND start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

3.2 Sensitive Query Detection
-- Detect potential data exfiltration
SELECT
 query_id,
 user_name,
 role_name,
 query_text,
 rows_produced,
 bytes_scanned,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_type = 'SELECT'
 AND rows_produced > 1000000 -- Large result sets
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY rows_produced DESC;

-- Queries on sensitive tables
SELECT
 qh.query_id,
 qh.user_name,
 qh.role_name,
 qh.query_text,
 qh.start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY qh
WHERE qh.query_text ILIKE '%customers%' -- Sensitive table
 OR qh.query_text ILIKE '%employees%'
 OR qh.query_text ILIKE '%credit_card%'
 AND qh.start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY qh.start_time DESC;

4. Access History Auditing
4.1 Data Access Tracking
-- Access history for specific table
SELECT
 query_id,
 query_start_time,
 user_name,
 role_name,
 direct_objects_accessed,
 base_objects_accessed,
 objects_modified
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY
WHERE ARRAY_CONTAINS('ANALYTICS_DB.PUBLIC.CUSTOMERS'::VARIANT, base_objects_accessed)
 AND query_start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY query_start_time DESC;

-- Column-level access tracking
SELECT
 ah.query_id,
 ah.query_start_time,
 ah.user_name,
 boa.value:objectName::VARCHAR AS object_name,
 cols.value:columnName::VARCHAR AS column_accessed
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY ah,
 LATERAL FLATTEN(base_objects_accessed) boa,
 LATERAL FLATTEN(boa.value:columns) cols
WHERE ah.query_start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND boa.value:objectName::VARCHAR LIKE '%CUSTOMERS%'
ORDER BY ah.query_start_time DESC;

-- Data modification audit
SELECT
 query_id,
 query_start_time,
 user_name,
 role_name,
 om.value:objectName::VARCHAR AS modified_object,
 om.value:objectDomain::VARCHAR AS object_type,
 om.value:columns AS columns_modified
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
 LATERAL FLATTEN(objects_modified) om
WHERE query_start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND ARRAY_SIZE(objects_modified) > 0
ORDER BY query_start_time DESC;

4.2 Access Patterns Analysis
-- User access patterns
SELECT
 user_name,
 DATE_TRUNC('day', query_start_time) AS access_date,
 COUNT(DISTINCT query_id) AS query_count,
 COUNT(DISTINCT boa.value:objectName) AS unique_objects
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
 LATERAL FLATTEN(base_objects_accessed) boa
WHERE query_start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
GROUP BY user_name, DATE_TRUNC('day', query_start_time)
ORDER BY user_name, access_date;

-- Most accessed sensitive objects
SELECT
 boa.value:objectName::VARCHAR AS object_name,
 COUNT(DISTINCT query_id) AS access_count,
 COUNT(DISTINCT user_name) AS unique_users,
 MAX(query_start_time) AS last_accessed
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
 LATERAL FLATTEN(base_objects_accessed) boa
WHERE query_start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
 AND boa.value:objectName::VARCHAR LIKE '%CUSTOMERS%'
 OR boa.value:objectName::VARCHAR LIKE '%EMPLOYEES%'
 OR boa.value:objectName::VARCHAR LIKE '%FINANCIAL%'
GROUP BY boa.value:objectName
ORDER BY access_count DESC;

5. Login and Session Auditing
5.1 Login History
-- Recent login activity
SELECT
 event_timestamp,
 user_name,
 client_ip,
 reported_client_type,
 first_authentication_factor,
 second_authentication_factor,
 is_success,
 error_code,
 error_message
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE event_timestamp >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY event_timestamp DESC;

-- Failed login attempts
SELECT
 event_timestamp,
 user_name,
 client_ip,
 error_code,
 error_message,
 COUNT(*) OVER (PARTITION BY user_name, DATE_TRUNC('hour', event_timestamp)) AS failures_per_hour
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY event_timestamp DESC;

-- Potential brute force detection
SELECT
 user_name,
 client_ip,
 DATE_TRUNC('hour', event_timestamp) AS hour,
 COUNT(*) AS failed_attempts
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY user_name, client_ip, DATE_TRUNC('hour', event_timestamp)
HAVING COUNT(*) > 5 -- Threshold for suspicious activity
ORDER BY failed_attempts DESC;

-- Unusual login locations (new IPs)
WITH user_known_ips AS (
 SELECT DISTINCT user_name, client_ip
 FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
 WHERE event_timestamp BETWEEN DATEADD('day', -90, CURRENT_TIMESTAMP())
 AND DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND is_success = 'YES'
)
SELECT
 lh.event_timestamp,
 lh.user_name,
 lh.client_ip,
 lh.reported_client_type
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY lh
LEFT JOIN user_known_ips uki
 ON lh.user_name = uki.user_name AND lh.client_ip = uki.client_ip
WHERE lh.event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND lh.is_success = 'YES'
 AND uki.client_ip IS NULL -- New IP
ORDER BY lh.event_timestamp DESC;

5.2 Session Monitoring
-- Active sessions
SELECT
 session_id,
 user_name,
 created_on,
 authentication_method,
 client_application_id,
 client_environment
FROM SNOWFLAKE.ACCOUNT_USAGE.SESSIONS
WHERE created_on >= DATEADD('day', -1, CURRENT_TIMESTAMP())
ORDER BY created_on DESC;

-- Long-running sessions
SELECT
 session_id,
 user_name,
 created_on,
 TIMESTAMPDIFF('hour', created_on, CURRENT_TIMESTAMP()) AS session_hours
FROM SNOWFLAKE.ACCOUNT_USAGE.SESSIONS
WHERE created_on >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND TIMESTAMPDIFF('hour', created_on, CURRENT_TIMESTAMP()) > 24
ORDER BY session_hours DESC;

6. Security Configuration Audit
6.1 Role and Grant Auditing
-- Current role grants
SELECT
 grantee_name,
 role,
 granted_by,
 created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS
ORDER BY created_on DESC;

-- Role hierarchy
SELECT
 grantee_name AS child_role,
 role AS parent_role,
 granted_by,
 created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_ROLES
WHERE granted_on = 'ROLE'
ORDER BY grantee_name;

-- Privilege grants on objects
SELECT
 granted_on,
 name AS object_name,
 privilege,
 grantee_name,
 grant_option,
 granted_by,
 created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_ROLES
WHERE granted_on IN ('TABLE', 'VIEW', 'DATABASE', 'SCHEMA')
 AND created_on >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY created_on DESC;

-- Users with ACCOUNTADMIN
SELECT
 grantee_name,
 role,
 granted_by,
 created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS
WHERE role = 'ACCOUNTADMIN'
ORDER BY created_on DESC;

6.2 Policy Audit
-- Masking policies audit
SELECT
 policy_name,
 policy_schema,
 policy_catalog,
 policy_owner,
 created,
 last_altered
FROM SNOWFLAKE.ACCOUNT_USAGE.MASKING_POLICIES
ORDER BY created DESC;

-- Row access policies audit
SELECT
 policy_name,
 policy_schema,
 policy_catalog,
 policy_owner,
 created,
 last_altered
FROM SNOWFLAKE.ACCOUNT_USAGE.ROW_ACCESS_POLICIES
ORDER BY created DESC;

-- Policy assignments
SELECT *
FROM TABLE(INFORMATION_SCHEMA.POLICY_REFERENCES(
 POLICY_NAME => 'security.pii_mask'
));

7. Compliance Reporting
7.1 GDPR Compliance
-- Data subject access request (DSAR)
-- Find all data for a specific user
SELECT
 ah.query_start_time,
 boa.value:objectName::VARCHAR AS object_accessed,
 ah.user_name AS accessed_by
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY ah,
 LATERAL FLATTEN(base_objects_accessed) boa
WHERE ah.query_start_time >= DATEADD('year', -1, CURRENT_TIMESTAMP())
 AND ah.query_text ILIKE '%customer_id = 12345%' -- Target data subject
ORDER BY ah.query_start_time DESC;

-- Right to be forgotten audit
SELECT
 query_id,
 user_name,
 query_text,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_type = 'DELETE'
 AND query_text ILIKE '%customers%'
 AND start_time >= DATEADD('day', -90, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Data export tracking
SELECT
 query_id,
 user_name,
 query_text,
 rows_produced,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE (query_text ILIKE '%COPY INTO%@%' OR query_text ILIKE '%GET %')
 AND start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

7.2 SOC 2 Compliance
-- User access review
SELECT
 u.name AS user_name,
 u.login_name,
 u.disabled,
 u.last_success_login,
 LISTAGG(DISTINCT gtu.role, ', ') AS assigned_roles
FROM SNOWFLAKE.ACCOUNT_USAGE.USERS u
LEFT JOIN SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS gtu
 ON u.name = gtu.grantee_name
GROUP BY u.name, u.login_name, u.disabled, u.last_success_login
ORDER BY u.name;

-- Privileged access audit
SELECT
 gtu.grantee_name AS user_name,
 gtu.role AS privileged_role,
 gtu.granted_by,
 gtu.created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS gtu
WHERE gtu.role IN ('ACCOUNTADMIN', 'SECURITYADMIN', 'SYSADMIN')
ORDER BY gtu.role, gtu.grantee_name;

-- Change management audit
SELECT
 query_id,
 user_name,
 role_name,
 query_type,
 query_text,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_type IN ('CREATE', 'ALTER', 'DROP')
 AND start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

7.3 PCI-DSS Compliance
-- Credit card data access audit
SELECT
 ah.query_id,
 ah.query_start_time,
 ah.user_name,
 ah.role_name,
 boa.value:objectName::VARCHAR AS object_name
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY ah,
 LATERAL FLATTEN(base_objects_accessed) boa
WHERE ah.query_start_time >= DATEADD('day', -90, CURRENT_TIMESTAMP())
 AND (boa.value:objectName::VARCHAR ILIKE '%CREDIT%'
 OR boa.value:objectName::VARCHAR ILIKE '%PAYMENT%'
 OR boa.value:objectName::VARCHAR ILIKE '%CARD%')
ORDER BY ah.query_start_time DESC;

-- Encryption status
SELECT
 table_catalog,
 table_schema,
 table_name,
 'ENCRYPTED' AS encryption_status -- Snowflake encrypts all data
FROM INFORMATION_SCHEMA.TABLES
WHERE table_schema NOT IN ('INFORMATION_SCHEMA');

8. Audit Retention and Export
8.1 Long-Term Audit Storage
-- Create audit archive table
CREATE TABLE audit_db.archive.query_history_archive (
 archive_date DATE,
 query_id VARCHAR,
 query_text VARCHAR,
 user_name VARCHAR,
 role_name VARCHAR,
 database_name VARCHAR,
 schema_name VARCHAR,
 query_type VARCHAR,
 start_time TIMESTAMP_NTZ,
 end_time TIMESTAMP_NTZ,
 total_elapsed_time NUMBER,
 execution_status VARCHAR,
 error_code VARCHAR,
 error_message VARCHAR
);

-- Archive old audit data (run monthly)
INSERT INTO audit_db.archive.query_history_archive
SELECT
 CURRENT_DATE() AS archive_date,
 query_id,
 query_text,
 user_name,
 role_name,
 database_name,
 schema_name,
 query_type,
 start_time,
 end_time,
 total_elapsed_time,
 execution_status,
 error_code,
 error_message
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time BETWEEN DATEADD('day', -365, CURRENT_DATE())
 AND DATEADD('day', -330, CURRENT_DATE());

-- Export audit data to external storage
COPY INTO @audit_stage/query_history/
FROM (
 SELECT * FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
 WHERE start_time >= DATEADD('day', -30, CURRENT_DATE())
)
FILE_FORMAT = (TYPE = PARQUET)
HEADER = TRUE;

8.2 Automated Audit Tasks
-- Daily audit summary task
CREATE OR REPLACE TASK audit_db.tasks.daily_audit_summary
 WAREHOUSE = audit_wh
 SCHEDULE = 'USING CRON 0 6 * * * UTC'
AS
INSERT INTO audit_db.reports.daily_summary
SELECT
 CURRENT_DATE() - 1 AS report_date,
 COUNT(DISTINCT user_name) AS unique_users,
 COUNT(*) AS total_queries,
 SUM(CASE WHEN execution_status = 'FAIL' THEN 1 ELSE 0 END) AS failed_queries,
 SUM(CASE WHEN query_type IN ('CREATE', 'ALTER', 'DROP') THEN 1 ELSE 0 END) AS ddl_changes
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE DATE(start_time) = CURRENT_DATE() - 1;

9. Best Practices
9.1 Audit GuidelinesPracticeDescriptionEnable all loggingEnsure ACCESS_HISTORY is enabledRegular reviewsWeekly review of privileged accessAlert on anomaliesSet up alerts for suspicious activityArchive audit dataExport data beyond 365-day retentionDocument policiesMaintain audit procedures documentationSegregate dutiesSeparate audit role from admin roles
9.2 Compliance Checklist
-- Weekly compliance check
CREATE OR REPLACE PROCEDURE audit_db.procedures.weekly_compliance_check()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 issues_found INTEGER := 0;
BEGIN
 -- Check 1: Users with ACCOUNTADMIN
 SELECT COUNT(*) INTO issues_found
 FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS
 WHERE role = 'ACCOUNTADMIN';

 IF (issues_found > 5) THEN
 INSERT INTO audit_db.alerts.compliance_alerts
 VALUES (CURRENT_TIMESTAMP(), 'HIGH', 'Too many ACCOUNTADMIN users: ' || issues_found);
 END IF;

 -- Check 2: Failed logins
 SELECT COUNT(*) INTO issues_found
 FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
 WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP());

 IF (issues_found > 100) THEN
 INSERT INTO audit_db.alerts.compliance_alerts
 VALUES (CURRENT_TIMESTAMP(), 'MEDIUM', 'High number of failed logins: ' || issues_found);
 END IF;

 RETURN 'Compliance check completed';
END;
$$;

Document ControlVersionDateAuthorChanges1.02025-01-29Security & Compliance TeamInitial document
This document is maintained by the Security & Compliance Team.

