Snowflake Data Classification & Cataloging Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Governance Team
1. Executive Summary
Data classification in Snowflake enables organizations to identify, categorize, and protect sensitive data. This guide covers automatic data classification, tagging, object tagging policies, and integration with data governance frameworks.
2. Data Classification Architecture
┌───┐
│ DATA CLASSIFICATION FRAMEWORK │
├───┤
│ │
│ ┌───┐ │
│ │ CLASSIFICATION ENGINE │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Automatic │ │ Manual │ │ Policy-Based │ │ │
│ │ │ Discovery │ │ Tagging │ │ Assignment │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • ML-based │ │ • User defined │ │ • Rule engine │ │ │
│ │ │ • Pattern match │ │ • Bulk updates │ │ • Inheritance │ │ │
│ │ │ • Sampling │ │ • Review flows │ │ • Propagation │ │ │
│ │ └────────┬────────┘ └────────┬────────┘ └────────┬────────┘ │ │
│ │ │ │ │ │ │
│ │ └────────────────────┼────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌───┐ │ │
│ │ │ TAG TAXONOMY │ │ │
│ │ │ │ │ │
│ │ │ ┌───────────────┐ ┌───────────────┐ ┌───────────────┐ │ │ │
│ │ │ │ SENSITIVITY │ │ PII TYPE │ │ COMPLIANCE │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ • Public │ │ • None │ │ • GDPR │ │ │ │
│ │ │ │ • Internal │ │ • Direct │ │ • HIPAA │ │ │ │
│ │ │ │ • Confidential│ │ • Quasi │ │ • PCI-DSS │ │ │ │
│ │ │ │ • Restricted │ │ • Sensitive │ │ • SOX │ │ │ │
│ │ │ └───────────────┘ └───────────────┘ └───────────────┘ │ │ │
│ │ └───┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌───┐ │ │
│ │ │ ENFORCEMENT LAYER │ │ │
│ │ │ │ │ │
│ │ │ Masking Policies ──► Row Access Policies ──► Audit Logs │ │ │
│ │ │ │ │ │
│ │ └───┘ │ │
│ └───┘ │
│ │
└───┘

3. Automatic Data Classification
3.1 Enabling Classification
-- Enable data classification on a table
ALTER TABLE analytics_db.public.customers
 ENABLE DATA_METRIC_FUNCTION
 WITH CLASSIFICATION;

-- Run classification on specific columns
SELECT SYSTEM$CLASSIFY_SCHEMA('analytics_db', 'public');

-- View classification results
SELECT *
FROM TABLE(
 INFORMATION_SCHEMA.DATA_CLASSIFICATION_STATUS(
 'analytics_db.public.customers'
)
);

-- Get classification recommendations
SELECT
 TABLE_NAME,
 COLUMN_NAME,
 CLASSIFICATION_CATEGORY,
 CLASSIFICATION_TAG,
 CONFIDENCE_LEVEL
FROM TABLE(
 SNOWFLAKE.LOCAL.DATA_CLASSIFICATION_SCAN(
 'analytics_db.public.customers'
)
);

3.2 Classification Categories
-- Snowflake built-in semantic categories
/*
SEMANTIC_CATEGORY values:
- NAME: Person names
- EMAIL: Email addresses
- PHONE_NUMBER: Phone numbers
- ADDRESS: Physical addresses
- CREDIT_CARD_NUMBER: Payment card numbers
- BANK_ACCOUNT: Bank account numbers
- SSN: Social Security Numbers
- PASSPORT_NUMBER: Passport identifiers
- DRIVER_LICENSE: Driver's license numbers
- DATE_OF_BIRTH: Birth dates
- IP_ADDRESS: Network addresses
- LATITUDE_LONGITUDE: Geographic coordinates
*/

-- View classified columns
SELECT
 t.table_name,
 c.column_name,
 tc.tag_value AS classification
FROM information_schema.tables t
JOIN information_schema.columns c ON t.table_name = c.table_name
LEFT JOIN table(information_schema.tag_references_all_columns(
 t.table_catalog || '.' || t.table_schema || '.' || t.table_name,
 'TABLE'
)) tc ON c.column_name = tc.column_name
WHERE tc.tag_name = 'SEMANTIC_CATEGORY';

4. Custom Tags and Taxonomy
4.1 Creating Tag Taxonomy
-- Create governance database and schema
CREATE DATABASE IF NOT EXISTS governance_db;
CREATE SCHEMA IF NOT EXISTS governance_db.tags;

-- Data Classification Tag
CREATE OR REPLACE TAG governance_db.tags.data_classification
 ALLOWED_VALUES 'PUBLIC', 'INTERNAL', 'CONFIDENTIAL', 'RESTRICTED'
 COMMENT = 'Data sensitivity classification';

-- PII Type Tag
CREATE OR REPLACE TAG governance_db.tags.pii_type
 ALLOWED_VALUES 'NONE', 'DIRECT_PII', 'QUASI_PII', 'SENSITIVE_PII'
 COMMENT = 'Type of personally identifiable information';

-- Compliance Framework Tag
CREATE OR REPLACE TAG governance_db.tags.compliance
 ALLOWED_VALUES 'NONE', 'GDPR', 'HIPAA', 'PCI_DSS', 'SOX', 'CCPA'
 COMMENT = 'Applicable compliance framework';

-- Data Domain Tag
CREATE OR REPLACE TAG governance_db.tags.data_domain
 ALLOWED_VALUES 'CUSTOMER', 'FINANCIAL', 'PRODUCT', 'OPERATIONAL', 'HR', 'MARKETING'
 COMMENT = 'Business domain classification';

-- Data Owner Tag (free-form)
CREATE OR REPLACE TAG governance_db.tags.data_owner
 COMMENT = 'Team or person responsible for data';

-- Data Steward Tag
CREATE OR REPLACE TAG governance_db.tags.data_steward
 COMMENT = 'Person responsible for data quality';

-- Retention Period Tag
CREATE OR REPLACE TAG governance_db.tags.retention_days
 COMMENT = 'Data retention period in days';

4.2 Applying Tags
-- Apply tags to database
ALTER DATABASE analytics_db
 SET TAG governance_db.tags.data_domain = 'FINANCIAL',
 governance_db.tags.data_owner = 'finance_team';

-- Apply tags to schema
ALTER SCHEMA analytics_db.customer_data
 SET TAG governance_db.tags.data_classification = 'CONFIDENTIAL',
 governance_db.tags.compliance = 'GDPR';

-- Apply tags to table
ALTER TABLE analytics_db.customer_data.customers
 SET TAG governance_db.tags.data_classification = 'CONFIDENTIAL',
 governance_db.tags.pii_type = 'DIRECT_PII',
 governance_db.tags.compliance = 'GDPR',
 governance_db.tags.retention_days = '2555'; -- 7 years

-- Apply tags to specific columns
ALTER TABLE analytics_db.customer_data.customers
 MODIFY COLUMN email SET TAG governance_db.tags.pii_type = 'DIRECT_PII';

ALTER TABLE analytics_db.customer_data.customers
 MODIFY COLUMN ssn SET TAG governance_db.tags.pii_type = 'SENSITIVE_PII',
 governance_db.tags.compliance = 'PCI_DSS';

ALTER TABLE analytics_db.customer_data.customers
 MODIFY COLUMN customer_segment SET TAG governance_db.tags.pii_type = 'QUASI_PII';

4.3 Querying Tags
-- View all tags
SHOW TAGS IN SCHEMA governance_db.tags;

-- View tag on specific object
SELECT SYSTEM$GET_TAG('governance_db.tags.data_classification', 'analytics_db.customer_data.customers', 'TABLE');

-- View all tags on a table
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TAG_REFERENCES(
 'analytics_db.customer_data.customers',
 'TABLE'
));

-- View all tags on columns
SELECT *
FROM TABLE(INFORMATION_SCHEMA.TAG_REFERENCES_ALL_COLUMNS(
 'analytics_db.customer_data.customers',
 'TABLE'
));

-- Find all objects with specific tag value
SELECT *
FROM SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES
WHERE TAG_NAME = 'DATA_CLASSIFICATION'
 AND TAG_VALUE = 'CONFIDENTIAL';

-- Comprehensive tag report
SELECT
 tr.object_database,
 tr.object_schema,
 tr.object_name,
 tr.column_name,
 tr.tag_name,
 tr.tag_value
FROM SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
WHERE tr.tag_database = 'GOVERNANCE_DB'
ORDER BY tr.object_database, tr.object_schema, tr.object_name;

5. Tag-Based Policies
5.1 Tag-Based Masking Policies
-- Create masking policy that uses tags
CREATE OR REPLACE MASKING POLICY governance_db.policies.tag_based_pii_mask
AS (val VARCHAR) RETURNS VARCHAR ->
 CASE
 -- Admins see everything
 WHEN CURRENT_ROLE() IN ('ACCOUNTADMIN', 'DATA_ADMIN') THEN val

 -- Check tag on current column
 WHEN SYSTEM$GET_TAG_ON_CURRENT_COLUMN('governance_db.tags.pii_type') = 'SENSITIVE_PII'
 AND CURRENT_ROLE() NOT IN ('PII_FULL_ACCESS') THEN '***REDACTED***'

 WHEN SYSTEM$GET_TAG_ON_CURRENT_COLUMN('governance_db.tags.pii_type') = 'DIRECT_PII'
 AND CURRENT_ROLE() NOT IN ('PII_FULL_ACCESS', 'PII_PARTIAL_ACCESS')
 THEN CONCAT(LEFT(val, 2), '***', RIGHT(val, 2))

 WHEN SYSTEM$GET_TAG_ON_CURRENT_COLUMN('governance_db.tags.pii_type') = 'QUASI_PII'
 AND CURRENT_ROLE() NOT IN ('PII_FULL_ACCESS', 'PII_PARTIAL_ACCESS', 'ANALYST')
 THEN 'MASKED'

 ELSE val
 END;

-- Apply masking policy based on tags
-- When tagging a column, the policy automatically applies
ALTER TABLE analytics_db.customer_data.customers
 MODIFY COLUMN email SET MASKING POLICY governance_db.policies.tag_based_pii_mask;

ALTER TABLE analytics_db.customer_data.customers
 MODIFY COLUMN phone SET MASKING POLICY governance_db.policies.tag_based_pii_mask;

5.2 Tag-Based Access Policies
-- Row access policy based on data classification
CREATE OR REPLACE ROW ACCESS POLICY governance_db.policies.classification_access
AS (classification VARCHAR) RETURNS BOOLEAN ->
 CASE
 -- Everyone can see PUBLIC data
 WHEN classification = 'PUBLIC' THEN TRUE

 -- INTERNAL requires authenticated user
 WHEN classification = 'INTERNAL' AND CURRENT_USER() IS NOT NULL THEN TRUE

 -- CONFIDENTIAL requires specific roles
 WHEN classification = 'CONFIDENTIAL'
 AND CURRENT_ROLE() IN ('ACCOUNTADMIN', 'DATA_ADMIN', 'CONFIDENTIAL_ACCESS') THEN TRUE

 -- RESTRICTED requires admin only
 WHEN classification = 'RESTRICTED'
 AND CURRENT_ROLE() IN ('ACCOUNTADMIN', 'DATA_ADMIN') THEN TRUE

 ELSE FALSE
 END;

-- Apply to table with classification column
ALTER TABLE analytics_db.documents
 ADD ROW ACCESS POLICY governance_db.policies.classification_access
 ON (data_classification);

6. Data Catalog
6.1 Building a Data Catalog
-- Create data catalog view
CREATE OR REPLACE VIEW governance_db.catalog.data_catalog AS
SELECT
 t.table_catalog AS database_name,
 t.table_schema AS schema_name,
 t.table_name,
 t.table_type,
 t.row_count,
 t.bytes / 1024 / 1024 AS size_mb,
 t.created,
 t.last_altered,
 -- Classification tags
 MAX(CASE WHEN tr.tag_name = 'DATA_CLASSIFICATION' THEN tr.tag_value END) AS data_classification,
 MAX(CASE WHEN tr.tag_name = 'DATA_DOMAIN' THEN tr.tag_value END) AS data_domain,
 MAX(CASE WHEN tr.tag_name = 'DATA_OWNER' THEN tr.tag_value END) AS data_owner,
 MAX(CASE WHEN tr.tag_name = 'DATA_STEWARD' THEN tr.tag_value END) AS data_steward,
 MAX(CASE WHEN tr.tag_name = 'COMPLIANCE' THEN tr.tag_value END) AS compliance,
 MAX(CASE WHEN tr.tag_name = 'RETENTION_DAYS' THEN tr.tag_value END) AS retention_days,
 t.comment AS table_description
FROM INFORMATION_SCHEMA.TABLES t
LEFT JOIN SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
 ON t.table_catalog = tr.object_database
 AND t.table_schema = tr.object_schema
 AND t.table_name = tr.object_name
 AND tr.domain = 'TABLE'
WHERE t.table_schema != 'INFORMATION_SCHEMA'
GROUP BY 1, 2, 3, 4, 5, 6, 7, 8, t.comment;

-- Column-level catalog
CREATE OR REPLACE VIEW governance_db.catalog.column_catalog AS
SELECT
 c.table_catalog AS database_name,
 c.table_schema AS schema_name,
 c.table_name,
 c.column_name,
 c.ordinal_position,
 c.data_type,
 c.is_nullable,
 -- Column tags
 MAX(CASE WHEN tr.tag_name = 'PII_TYPE' THEN tr.tag_value END) AS pii_type,
 MAX(CASE WHEN tr.tag_name = 'SEMANTIC_CATEGORY' THEN tr.tag_value END) AS semantic_category,
 c.comment AS column_description
FROM INFORMATION_SCHEMA.COLUMNS c
LEFT JOIN SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
 ON c.table_catalog = tr.object_database
 AND c.table_schema = tr.object_schema
 AND c.table_name = tr.object_name
 AND c.column_name = tr.column_name
 AND tr.domain = 'COLUMN'
WHERE c.table_schema != 'INFORMATION_SCHEMA'
GROUP BY 1, 2, 3, 4, 5, 6, 7, c.comment;

6.2 Data Lineage
-- View object dependencies (basic lineage)
SELECT *
FROM SNOWFLAKE.ACCOUNT_USAGE.OBJECT_DEPENDENCIES
WHERE referencing_object_name = 'MY_VIEW'
ORDER BY referenced_object_name;

-- Access history for lineage
SELECT
 query_start_time,
 user_name,
 direct_objects_accessed,
 base_objects_accessed,
 objects_modified
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY
WHERE query_start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND ARRAY_SIZE(objects_modified) > 0
ORDER BY query_start_time DESC
LIMIT 100;

-- Build lineage from access history
SELECT
 om.value:objectName::VARCHAR AS target_object,
 boa.value:objectName::VARCHAR AS source_object,
 COUNT(*) AS access_count,
 MAX(query_start_time) AS last_access
FROM SNOWFLAKE.ACCOUNT_USAGE.ACCESS_HISTORY,
 LATERAL FLATTEN(objects_modified) om,
 LATERAL FLATTEN(base_objects_accessed) boa
WHERE query_start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
GROUP BY 1, 2
ORDER BY access_count DESC;

7. Compliance Reporting
7.1 PII Inventory Report
-- PII inventory report
CREATE OR REPLACE VIEW governance_db.reports.pii_inventory AS
SELECT
 tr.object_database,
 tr.object_schema,
 tr.object_name,
 tr.column_name,
 tr.tag_value AS pii_type,
 t.row_count AS record_count,
 CASE tr.tag_value
 WHEN 'SENSITIVE_PII' THEN 'High'
 WHEN 'DIRECT_PII' THEN 'Medium'
 WHEN 'QUASI_PII' THEN 'Low'
 ELSE 'None'
 END AS risk_level
FROM SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
JOIN INFORMATION_SCHEMA.TABLES t
 ON tr.object_database = t.table_catalog
 AND tr.object_schema = t.table_schema
 AND tr.object_name = t.table_name
WHERE tr.tag_name = 'PII_TYPE'
 AND tr.tag_value != 'NONE'
ORDER BY
 CASE tr.tag_value
 WHEN 'SENSITIVE_PII' THEN 1
 WHEN 'DIRECT_PII' THEN 2
 WHEN 'QUASI_PII' THEN 3
 END,
 tr.object_database, tr.object_schema, tr.object_name;

7.2 Compliance Coverage Report
-- Objects missing classification
SELECT
 t.table_catalog AS database_name,
 t.table_schema AS schema_name,
 t.table_name,
 CASE WHEN tr.tag_value IS NOT NULL THEN 'Classified' ELSE 'Unclassified' END AS status
FROM INFORMATION_SCHEMA.TABLES t
LEFT JOIN SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
 ON t.table_catalog = tr.object_database
 AND t.table_schema = tr.object_schema
 AND t.table_name = tr.object_name
 AND tr.tag_name = 'DATA_CLASSIFICATION'
WHERE t.table_schema NOT IN ('INFORMATION_SCHEMA', 'ACCOUNT_USAGE')
 AND tr.tag_value IS NULL;

-- Classification coverage summary
SELECT
 database_name,
 schema_name,
 COUNT(*) AS total_tables,
 SUM(CASE WHEN data_classification IS NOT NULL THEN 1 ELSE 0 END) AS classified_tables,
 ROUND(SUM(CASE WHEN data_classification IS NOT NULL THEN 1 ELSE 0 END) * 100.0 / COUNT(*), 2) AS coverage_pct
FROM governance_db.catalog.data_catalog
GROUP BY database_name, schema_name
ORDER BY coverage_pct ASC;

8. Best Practices
8.1 Classification GuidelinesPracticeDescriptionDefine taxonomy firstCreate clear classification categoriesUse allowed valuesConstrain tags to valid optionsAutomate where possibleUse automatic classificationRegular reviewsAudit classifications periodicallyLink to policiesConnect tags to masking/access policiesDocument standardsMaintain classification guidelines
8.2 Implementation Checklist
-- 1. Create governance structure
CREATE DATABASE governance_db;
CREATE SCHEMA governance_db.tags;
CREATE SCHEMA governance_db.policies;
CREATE SCHEMA governance_db.catalog;
CREATE SCHEMA governance_db.reports;

-- 2. Define tag taxonomy (see section 4.1)

-- 3. Run automatic classification
SELECT SYSTEM$CLASSIFY_SCHEMA('target_db', 'target_schema');

-- 4. Review and validate classifications
SELECT * FROM TABLE(INFORMATION_SCHEMA.TAG_REFERENCES_ALL_COLUMNS(...));

-- 5. Create and apply policies
-- (See tag-based policies section)

-- 6. Set up monitoring
-- (See compliance reporting section)

-- 7. Schedule regular audits
CREATE TASK governance_db.tasks.weekly_classification_audit
 WAREHOUSE = governance_wh
 SCHEDULE = 'USING CRON 0 8 * * 1 UTC' -- Monday 8 AM
AS
CALL governance_db.procedures.run_classification_audit();

Document ControlVersionDateAuthorChanges1.02025-01-29Data Governance TeamInitial document
This document is maintained by the Data Governance Team.

