Snowflake Cross-Cloud & Cross-Region Replication Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Platform Team
1. Executive Summary
Snowflake enables data replication across regions and cloud providers for disaster recovery, performance optimization, and global data distribution. This guide covers database replication, failover groups, and best practices for multi-region architectures.
2. Replication Architecture
┌───┐
│ CROSS-REGION REPLICATION │
├───┤
│ │
│ PRIMARY REGION (AWS US-EAST-1) SECONDARY REGION (AWS EU-WEST) │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ PRIMARY ACCOUNT │ │ SECONDARY ACCOUNT │ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ Async │ ┌───────────────────────┐ │ │
│ │ │ Database: PROD_DB │ │ Repl. │ │ Database: PROD_DB │ │ │
│ │ │ (Read/Write) │──┼───────────┼─►│ (Read-Only Replica) │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Tables │ │ │ │ • Tables (synced) │ │ │
│ │ │ • Views │ │ │ │ • Views (synced) │ │ │
│ │ │ • Schemas │ │ │ │ • Schemas (synced) │ │ │
│ │ └───────────────────────┘ │ │ └───────────────────────┘ │ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ Failover │ ┌───────────────────────┐ │ │
│ │ │ Failover Group │ │ Config │ │ Failover Group │ │ │
│ │ │ (Primary) │◄─┼───────────┼─►│ (Secondary) │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Databases │ │ │ │ Can become Primary │ │ │
│ │ │ • Roles │ │ │ │ on failover │ │ │
│ │ │ • Users │ │ │ │ │ │ │
│ │ │ • Warehouses │ │ │ │ │ │ │
│ │ └───────────────────────┘ │ │ └───────────────────────┘ │ │
│ │ │ │ │ │
│ └─────────────────────────────┘ └─────────────────────────────┘ │
│ │
│ REPLICATION METHODS: │
│ 1. Database Replication: Sync database objects across accounts │
│ 2. Failover Groups: Complete account failover for DR │
│ 3. Data Sharing: Zero-copy sharing (same region/cloud) │
│ │
└───┘

3. Database Replication
3.1 Enabling Database Replication
-- On PRIMARY account: Enable replication
ALTER DATABASE prod_db ENABLE REPLICATION TO ACCOUNTS
 org_name.secondary_account_us_west,
 org_name.secondary_account_eu;

-- View replication configuration
SHOW REPLICATION DATABASES;

-- Check which accounts can receive replicas
SHOW REPLICATION ACCOUNTS;

3.2 Creating Secondary Database
-- On SECONDARY account: Create replica database
CREATE DATABASE prod_db_replica
 AS REPLICA OF org_name.primary_account.prod_db;

-- Check replication status
SHOW DATABASES LIKE 'PROD_DB_REPLICA';

-- View replication details
SELECT *
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REFRESH_PROGRESS('prod_db_replica'));

-- Monitor replication lag
SELECT
 database_name,
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp,
 TIMESTAMPDIFF('minute', primary_snapshot_timestamp, secondary_snapshot_timestamp) AS lag_minutes
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REPLICATION_USAGE_HISTORY(
 DATE_RANGE_START => DATEADD('day', -7, CURRENT_DATE())
));

3.3 Managing Replication Refresh
-- Manual refresh of secondary database
ALTER DATABASE prod_db_replica REFRESH;

-- Schedule automatic refresh (via task on secondary)
CREATE TASK refresh_replica_task
 WAREHOUSE = replication_wh
 SCHEDULE = '10 MINUTE'
AS
ALTER DATABASE prod_db_replica REFRESH;

ALTER TASK refresh_replica_task RESUME;

-- Check refresh history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REFRESH_HISTORY(
 'prod_db_replica'
))
ORDER BY start_time DESC
LIMIT 20;

4. Failover Groups
4.1 Creating Failover Groups
-- On PRIMARY account: Create failover group
CREATE FAILOVER GROUP prod_failover_group
 OBJECT_TYPES = DATABASES, USERS, ROLES, WAREHOUSES, INTEGRATIONS
 ALLOWED_DATABASES = prod_db, analytics_db, staging_db
 ALLOWED_ACCOUNTS = org_name.secondary_account
 REPLICATION_SCHEDULE = '10 MINUTE';

-- View failover group status
SHOW FAILOVER GROUPS;

-- Describe failover group
DESCRIBE FAILOVER GROUP prod_failover_group;

4.2 Secondary Failover Group
-- On SECONDARY account: Create secondary failover group
CREATE FAILOVER GROUP prod_failover_group
 AS REPLICA OF org_name.primary_account.prod_failover_group;

-- Check secondary group status
SHOW FAILOVER GROUPS;

-- View replication progress
SELECT *
FROM TABLE(INFORMATION_SCHEMA.FAILOVER_GROUP_REFRESH_PROGRESS('prod_failover_group'));

4.3 Failover Operations
-- On SECONDARY account: Initiate failover (make secondary primary)
ALTER FAILOVER GROUP prod_failover_group PRIMARY;

-- This promotes secondary to primary
-- Original primary becomes secondary

-- Verify new primary status
SHOW FAILOVER GROUPS;

-- After failover, update applications to point to new primary

-- Failback: When original primary is recovered
-- On original primary (now secondary):
ALTER FAILOVER GROUP prod_failover_group PRIMARY;

5. Cross-Cloud Replication
5.1 Multi-Cloud Setup
-- Replicate from AWS to Azure
-- On AWS PRIMARY:
ALTER DATABASE prod_db ENABLE REPLICATION TO ACCOUNTS
 org_name.azure_west_europe_account;

-- On Azure SECONDARY:
CREATE DATABASE prod_db_replica
 AS REPLICA OF org_name.aws_primary_account.prod_db;

-- Monitor cross-cloud replication
SELECT
 database_name,
 region_group,
 snowflake_region,
 replication_status
FROM TABLE(INFORMATION_SCHEMA.REPLICATION_DATABASES());

5.2 Data Sharing Across Regions
-- For cross-region sharing, replicate first
-- Then create share on replica

-- On PRIMARY (US-EAST):
CREATE SHARE sales_share;
GRANT USAGE ON DATABASE analytics_db TO SHARE sales_share;
GRANT SELECT ON TABLE analytics_db.public.sales TO SHARE sales_share;

-- Enable share replication
ALTER SHARE sales_share ENABLE REPLICATION TO ACCOUNTS
 org_name.eu_west_account;

-- On SECONDARY (EU-WEST): Access replicated share
CREATE DATABASE sales_shared FROM SHARE org_name.primary_account.sales_share;

6. Monitoring Replication
6.1 Replication Metrics
-- Database replication history
SELECT
 database_name,
 start_time,
 end_time,
 TIMESTAMPDIFF('second', start_time, end_time) AS duration_seconds,
 bytes_transferred,
 credits_used
FROM SNOWFLAKE.ACCOUNT_USAGE.REPLICATION_USAGE_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Replication lag monitoring
SELECT
 database_name,
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp,
 TIMESTAMPDIFF('minute',
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp
) AS replication_lag_minutes
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REPLICATION_USAGE_HISTORY())
WHERE database_name = 'PROD_DB_REPLICA';

-- Failover group status
SELECT
 name,
 type,
 account_name,
 is_primary,
 object_types,
 replication_schedule
FROM INFORMATION_SCHEMA.FAILOVER_GROUPS;

6.2 Alerting on Replication Issues
-- Create alert for replication lag
CREATE ALERT replication_lag_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '5 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM TABLE(INFORMATION_SCHEMA.DATABASE_REPLICATION_USAGE_HISTORY())
 WHERE TIMESTAMPDIFF('minute',
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp
) > 30 -- 30 minute threshold
))
 THEN
 CALL send_notification('Replication lag exceeds 30 minutes');

ALTER ALERT replication_lag_alert RESUME;

-- Alert for replication failures
CREATE ALERT replication_failure_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '10 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM TABLE(INFORMATION_SCHEMA.DATABASE_REFRESH_HISTORY('prod_db_replica'))
 WHERE state = 'FAILED'
 AND start_time >= DATEADD('hour', -1, CURRENT_TIMESTAMP())
))
 THEN
 CALL send_notification('Database replication failed');

7. Disaster Recovery Patterns
7.1 Active-Passive DR
-- Primary region: Active (read/write)
-- Secondary region: Passive (read-only replica)

-- Setup:
-- 1. Create database replication
ALTER DATABASE prod_db ENABLE REPLICATION TO ACCOUNTS org_name.dr_account;

-- 2. Create failover group
CREATE FAILOVER GROUP dr_group
 OBJECT_TYPES = DATABASES, USERS, ROLES
 ALLOWED_DATABASES = prod_db
 ALLOWED_ACCOUNTS = org_name.dr_account
 REPLICATION_SCHEDULE = '5 MINUTE';

-- DR Procedure:
-- 1. Detect primary failure
-- 2. Failover to secondary
-- 3. Update DNS/connection strings
-- 4. Failback when primary recovers

7.2 Active-Active Pattern
-- Both regions: Active (read/write to local data)
-- Cross-region queries via data sharing

-- Region 1: Local + shared remote data
CREATE DATABASE local_orders; -- Local writes
CREATE DATABASE remote_orders FROM SHARE org_name.region2.orders_share; -- Remote reads

-- Unified view
CREATE VIEW all_orders AS
SELECT *, 'REGION_1' AS source_region FROM local_orders.public.orders
UNION ALL
SELECT *, 'REGION_2' AS source_region FROM remote_orders.public.orders;

-- Region 2: Mirror setup
CREATE DATABASE local_orders; -- Local writes
CREATE DATABASE remote_orders FROM SHARE org_name.region1.orders_share; -- Remote reads

7.3 RPO/RTO Considerations
/*
Recovery Point Objective (RPO):
- Minimum replication schedule: 1 minute
- Typical: 5-10 minutes
- Data loss window = replication lag

Recovery Time Objective (RTO):
- Failover operation: ~seconds
- Application reconnection: depends on architecture
- DNS propagation: varies

Recommendations by tier:
Tier	RPO	RTO	Replication Schedule
Critical	<5 min	<15 min	1 minute
High	<15 min	<1 hour	5 minutes
Standard	<1 hour	<4 hours	10-30 minutes
*/

-- Configure replication schedule for RPO
ALTER FAILOVER GROUP dr_group SET REPLICATION_SCHEDULE = '1 MINUTE';

8. Cost Management
8.1 Replication Costs
-- Data transfer costs
SELECT
 DATE_TRUNC('month', start_time) AS month,
 database_name,
 SUM(bytes_transferred) / 1024 / 1024 / 1024 AS gb_transferred,
 SUM(credits_used) AS total_credits
FROM SNOWFLAKE.ACCOUNT_USAGE.REPLICATION_USAGE_HISTORY
WHERE start_time >= DATEADD('month', -6, CURRENT_TIMESTAMP())
GROUP BY month, database_name
ORDER BY month DESC, total_credits DESC;

-- Cross-region transfer rates (varies by region pair)
/*
Approximate rates:
- Same cloud, different region: $0.02-0.12/GB
- Different cloud providers: $0.12-0.20/GB
*/

8.2 Optimizing Replication Costs
-- 1. Exclude non-critical data from replication
-- Create separate databases for critical vs non-critical

-- Critical data: Replicate
CREATE FAILOVER GROUP critical_data_group
 ALLOWED_DATABASES = critical_db1, critical_db2
 REPLICATION_SCHEDULE = '5 MINUTE';

-- Non-critical data: Don't replicate
-- Keep in separate database

-- 2. Use appropriate replication frequency
-- Higher frequency = more transfers = higher cost
ALTER FAILOVER GROUP prod_group SET REPLICATION_SCHEDULE = '15 MINUTE';

-- 3. Monitor replication costs
SELECT
 database_name,
 SUM(credits_used) AS monthly_credits,
 SUM(bytes_transferred) / 1024 / 1024 / 1024 AS gb_transferred
FROM SNOWFLAKE.ACCOUNT_USAGE.REPLICATION_USAGE_HISTORY
WHERE start_time >= DATE_TRUNC('month', CURRENT_DATE())
GROUP BY database_name
ORDER BY monthly_credits DESC;

9. Best Practices
9.1 Replication GuidelinesPracticeDescriptionDefine RPO/RTOSet clear recovery objectivesTest failover regularlyValidate DR procedures quarterlyMonitor lagAlert on replication delaysOptimize frequencyBalance freshness vs costDocument proceduresMaintain runbooks for failoverAutomate failoverReduce human intervention
9.2 Failover Checklist
-- Pre-failover checks:
-- 1. Verify secondary is healthy
SHOW FAILOVER GROUPS;
SELECT * FROM TABLE(INFORMATION_SCHEMA.FAILOVER_GROUP_REFRESH_PROGRESS('group_name'));

-- 2. Check replication lag
SELECT TIMESTAMPDIFF('minute', primary_snapshot_timestamp, CURRENT_TIMESTAMP())
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REPLICATION_USAGE_HISTORY())
LIMIT 1;

-- 3. Notify stakeholders

-- During failover:
-- 4. Execute failover
ALTER FAILOVER GROUP prod_group PRIMARY;

-- 5. Verify new primary status
SHOW FAILOVER GROUPS;

-- Post-failover:
-- 6. Update connection strings/DNS
-- 7. Validate application connectivity
-- 8. Monitor for issues
-- 9. Document incident

Document ControlVersionDateAuthorChanges1.02025-01-29Data Platform TeamInitial document
This document is maintained by the Data Platform Team.

