Snowflake BI Tools Integration Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerAnalytics Team
1. Executive Summary
Snowflake integrates with leading BI tools including Power BI, Tableau, Looker, and others through native connectors and ODBC/JDBC drivers. This guide covers connection setup, optimization techniques, and best practices for BI tool integration.
2. Integration Architecture
┌───┐
│ BI TOOL INTEGRATION ARCHITECTURE │
├───┤
│ │
│ BI TOOLS SNOWFLAKE │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ Native │ ┌───────────────────────┐ │ │
│ │ │ Tableau │ │ Conn. │ │ │ │ │
│ │ │ (Native Connector) │──┼──────────┼─►│ Virtual Warehouse │ │ │
│ │ └───────────────────────┘ │ │ │ (BI_WH) │ │ │
│ │ │ │ │ │ │ │
│ │ ┌───────────────────────┐ │ Native │ │ • Query execution │ │ │
│ │ │ Power BI │ │ Conn. │ │ • Result caching │ │ │
│ │ │ (Native Connector) │──┼──────────┼─►│ • Auto-suspend │ │ │
│ │ └───────────────────────┘ │ │ │ │ │ │
│ │ │ │ └───────────┬───────────┘ │ │
│ │ ┌───────────────────────┐ │ JDBC/ │ │ │ │
│ │ │ Looker │ │ ODBC │ ▼ │ │
│ │ │ (JDBC Connection) │──┼──────────┼─►┌───────────────────────┐ │ │
│ │ └───────────────────────┘ │ │ │ Semantic Layer │ │ │
│ │ │ │ │ │ │ │
│ │ ┌───────────────────────┐ │ REST │ │ • Views │ │ │
│ │ │ Streamlit │ │ API │ │ • Materialized Views │ │ │
│ │ │ (Snowpark) │──┼──────────┼─►│ • Dynamic Tables │ │ │
│ │ └───────────────────────┘ │ │ └───────────────────────┘ │ │
│ │ │ │ │ │
│ └─────────────────────────────┘ └─────────────────────────────┘ │
│ │
│ CONNECTION METHODS: │
│ • Native Connectors: Best performance, full feature support │
│ • ODBC/JDBC: Universal compatibility │
│ • Snowpark: Python-native integration │
│ │
└───┘

3. Power BI Integration
3.1 Connection Setup
Power BI Connection Steps:
1. Open Power BI Desktop
2. Get Data > Database > Snowflake
3. Enter connection details:
 - Server: <account>.snowflakecomputing.com
 - Warehouse: BI_WH
 - Database: ANALYTICS_DB (optional)
4. Authentication:
 - Snowflake account credentials
 - Azure AD (if configured)
5. Select tables/views to import

3.2 Power BI Optimization
-- Create optimized views for Power BI
CREATE OR REPLACE VIEW analytics_db.bi_layer.sales_for_powerbi AS
SELECT
 -- Dimension columns
 d.full_date AS order_date,
 d.year AS order_year,
 d.quarter AS order_quarter,
 d.month_name AS order_month,
 c.customer_name,
 c.region,
 p.product_name,
 p.category,

 -- Measures (pre-aggregated where possible)
 SUM(f.amount) AS total_amount,
 SUM(f.quantity) AS total_quantity,
 COUNT(DISTINCT f.order_id) AS order_count

FROM facts.fact_sales f
JOIN dims.dim_date d ON f.date_key = d.date_key
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk
JOIN dims.dim_product p ON f.product_sk = p.product_sk
WHERE c.is_current = TRUE
GROUP BY
 d.full_date, d.year, d.quarter, d.month_name,
 c.customer_name, c.region,
 p.product_name, p.category;

-- Power BI DirectQuery optimization
-- Use aggregation tables for large datasets
CREATE TABLE analytics_db.bi_layer.sales_agg_daily AS
SELECT
 date_key,
 region,
 category,
 SUM(amount) AS total_amount,
 COUNT(*) AS record_count
FROM facts.fact_sales
GROUP BY date_key, region, category;

3.3 Power BI Best Practices
-- 1. Create dedicated warehouse for BI
CREATE WAREHOUSE bi_wh
 WAREHOUSE_SIZE = 'MEDIUM'
 AUTO_SUSPEND = 60
 AUTO_RESUME = TRUE
 MIN_CLUSTER_COUNT = 1
 MAX_CLUSTER_COUNT = 3
 SCALING_POLICY = 'STANDARD';

-- 2. Use Import mode for smaller datasets
-- Use DirectQuery for real-time needs

-- 3. Optimize for common filters
ALTER TABLE analytics_db.bi_layer.sales_summary
 CLUSTER BY (order_date, region);

-- 4. Create Power BI-friendly date table
CREATE OR REPLACE VIEW analytics_db.bi_layer.date_table AS
SELECT
 date_key,
 full_date AS Date,
 year AS Year,
 quarter AS Quarter,
 month AS Month,
 month_name AS MonthName,
 week_of_year AS Week,
 day_of_month AS Day,
 day_name AS DayName,
 is_weekend AS IsWeekend,
 fiscal_year AS FiscalYear
FROM dims.dim_date;

4. Tableau Integration
4.1 Connection Setup
Tableau Connection Steps:
1. Connect > To a Server > Snowflake
2. Enter connection details:
 - Server: <account>.snowflakecomputing.com
 - Authentication: Username/Password or OAuth
 - Warehouse: BI_WH
 - Database: ANALYTICS_DB
 - Schema: BI_LAYER
3. Select tables or use Custom SQL

4.2 Tableau Optimization
-- Create extract-optimized views
CREATE OR REPLACE VIEW analytics_db.bi_layer.tableau_sales AS
SELECT
 order_id,
 order_date,
 customer_name,
 region,
 product_name,
 category,
 amount,
 quantity,
 profit
FROM analytics_db.reports.order_details
WHERE order_date >= DATEADD('year', -3, CURRENT_DATE());

-- For Tableau extracts, optimize column types
-- Avoid unnecessary VARCHAR lengths
-- Use proper numeric precision

-- Tableau Data Source Filter optimization
-- Create partitioned views for large datasets
CREATE OR REPLACE VIEW analytics_db.bi_layer.tableau_current_year AS
SELECT * FROM analytics_db.reports.order_details
WHERE YEAR(order_date) = YEAR(CURRENT_DATE());

-- Initial SQL for Tableau connections
/*
Add to Initial SQL in Tableau:
ALTER SESSION SET USE_CACHED_RESULT = TRUE;
ALTER SESSION SET QUERY_TAG = 'TABLEAU';
*/

4.3 Tableau Best Practices
-- 1. Use Tableau extracts for better performance
-- Schedule extract refreshes during off-peak hours

-- 2. Create aggregated tables for dashboard-level metrics
CREATE TABLE analytics_db.bi_layer.dashboard_kpis AS
SELECT
 DATE_TRUNC('day', order_date) AS report_date,
 region,
 COUNT(DISTINCT customer_id) AS unique_customers,
 COUNT(*) AS order_count,
 SUM(amount) AS total_revenue,
 AVG(amount) AS avg_order_value
FROM facts.fact_sales f
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk
JOIN dims.dim_date d ON f.date_key = d.date_key
GROUP BY DATE_TRUNC('day', order_date), region;

-- 3. Leverage Tableau's query optimization
-- Use EXPLAIN to understand query plans
EXPLAIN
SELECT region, SUM(amount)
FROM analytics_db.bi_layer.tableau_sales
GROUP BY region;

5. Looker Integration
5.1 Connection Setup
-- Looker uses JDBC connection
-- Connection string format:
-- jdbc:snowflake://<account>.snowflakecomputing.com/?warehouse=BI_WH&db=ANALYTICS_DB

-- Create Looker-specific role
CREATE ROLE looker_role;
GRANT USAGE ON WAREHOUSE bi_wh TO ROLE looker_role;
GRANT USAGE ON DATABASE analytics_db TO ROLE looker_role;
GRANT USAGE ON SCHEMA analytics_db.bi_layer TO ROLE looker_role;
GRANT SELECT ON ALL TABLES IN SCHEMA analytics_db.bi_layer TO ROLE looker_role;
GRANT SELECT ON FUTURE TABLES IN SCHEMA analytics_db.bi_layer TO ROLE looker_role;

-- Create Looker service account
CREATE USER looker_user
 PASSWORD = 'secure_password'
 DEFAULT_ROLE = looker_role
 DEFAULT_WAREHOUSE = bi_wh;

GRANT ROLE looker_role TO USER looker_user;

5.2 LookML Optimization
-- Create views optimized for LookML explores
CREATE OR REPLACE VIEW analytics_db.bi_layer.looker_orders AS
SELECT
 o.order_id,
 o.order_date,
 o.amount,
 o.quantity,
 c.customer_id,
 c.customer_name,
 c.region AS customer_region,
 p.product_id,
 p.product_name,
 p.category AS product_category
FROM orders o
LEFT JOIN customers c ON o.customer_id = c.customer_id
LEFT JOIN products p ON o.product_id = p.product_id;

-- PDT (Persistent Derived Table) equivalent
-- Create materialized views for Looker PDTs
CREATE MATERIALIZED VIEW analytics_db.bi_layer.looker_pdt_daily_metrics AS
SELECT
 DATE_TRUNC('day', order_date) AS order_day,
 region,
 category,
 SUM(amount) AS daily_revenue,
 COUNT(*) AS daily_orders
FROM analytics_db.bi_layer.looker_orders
GROUP BY 1, 2, 3;

6. Other BI Tools
6.1 Qlik Integration
-- Qlik Sense connection via ODBC
-- Driver: Snowflake ODBC Driver

-- Optimize for Qlik's associative model
CREATE VIEW analytics_db.bi_layer.qlik_sales AS
SELECT
 -- Link keys for associations
 order_id,
 customer_id,
 product_id,
 date_key,
 -- Dimensions
 region,
 category,
 -- Measures
 amount,
 quantity
FROM facts.fact_sales f
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk;

6.2 Metabase Integration
-- Metabase uses JDBC
-- jdbc:snowflake://<account>.snowflakecomputing.com

-- Create Metabase user
CREATE USER metabase_user
 PASSWORD = 'secure_password'
 DEFAULT_ROLE = bi_read_role
 DEFAULT_WAREHOUSE = bi_wh;

-- Optimize queries for Metabase auto-binning
-- Pre-aggregate at common granularities

6.3 ODBC/JDBC Configuration
-- Common connection parameters
/*
ODBC DSN Configuration:
- Driver: Snowflake ODBC Driver
- Server: <account>.snowflakecomputing.com
- Port: 443
- Database: ANALYTICS_DB
- Schema: BI_LAYER
- Warehouse: BI_WH
- Role: BI_READ_ROLE
- Authenticator: snowflake (or externalbrowser for SSO)

JDBC URL:
jdbc:snowflake://<account>.snowflakecomputing.com/?db=ANALYTICS_DB&schema=BI_LAYER&warehouse=BI_WH&role=BI_READ_ROLE
*/

7. Semantic Layer Design
7.1 BI-Ready Views
-- Create semantic layer schema
CREATE SCHEMA analytics_db.semantic;

-- Fact view with business-friendly names
CREATE OR REPLACE VIEW analytics_db.semantic.sales_facts AS
SELECT
 f.order_id AS "Order ID",
 d.full_date AS "Order Date",
 c.customer_name AS "Customer Name",
 c.region AS "Region",
 p.product_name AS "Product Name",
 p.category AS "Category",
 f.quantity AS "Quantity Sold",
 f.amount AS "Revenue",
 f.amount - (f.quantity * p.unit_cost) AS "Profit"
FROM facts.fact_sales f
JOIN dims.dim_date d ON f.date_key = d.date_key
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk AND c.is_current = TRUE
JOIN dims.dim_product p ON f.product_sk = p.product_sk;

-- Aggregated metrics view
CREATE OR REPLACE VIEW analytics_db.semantic.sales_metrics AS
SELECT
 "Order Date",
 "Region",
 "Category",
 COUNT(DISTINCT "Order ID") AS "Order Count",
 SUM("Quantity Sold") AS "Total Units",
 SUM("Revenue") AS "Total Revenue",
 SUM("Profit") AS "Total Profit",
 AVG("Revenue") AS "Average Order Value"
FROM analytics_db.semantic.sales_facts
GROUP BY "Order Date", "Region", "Category";

7.2 Calculation Views
-- Pre-calculated metrics for BI tools
CREATE OR REPLACE VIEW analytics_db.semantic.kpi_calculations AS
SELECT
 region,
 category,
 order_month,

 -- Revenue metrics
 total_revenue,
 prev_month_revenue,
 ROUND((total_revenue - prev_month_revenue) / NULLIF(prev_month_revenue, 0) * 100, 2) AS revenue_growth_pct,

 -- Customer metrics
 unique_customers,
 new_customers,
 ROUND(new_customers * 100.0 / NULLIF(unique_customers, 0), 2) AS new_customer_pct,

 -- Order metrics
 order_count,
 ROUND(total_revenue / NULLIF(order_count, 0), 2) AS average_order_value

FROM (
 SELECT
 region,
 category,
 DATE_TRUNC('month', order_date) AS order_month,
 SUM(amount) AS total_revenue,
 LAG(SUM(amount)) OVER (PARTITION BY region, category ORDER BY DATE_TRUNC('month', order_date)) AS prev_month_revenue,
 COUNT(DISTINCT customer_id) AS unique_customers,
 COUNT(DISTINCT CASE WHEN is_first_order THEN customer_id END) AS new_customers,
 COUNT(*) AS order_count
 FROM analytics_db.reports.order_details
 GROUP BY region, category, DATE_TRUNC('month', order_date)
);

8. Performance Optimization
8.1 Query Tagging
-- Tag queries for monitoring
-- In BI tool initial SQL or connection settings:
ALTER SESSION SET QUERY_TAG = 'POWERBI_SALES_DASHBOARD';

-- Query tagged queries
SELECT
 query_tag,
 COUNT(*) AS query_count,
 AVG(total_elapsed_time) / 1000 AS avg_duration_sec,
 SUM(bytes_scanned) / 1024 / 1024 / 1024 AS total_gb_scanned
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_tag LIKE 'POWERBI%'
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY query_tag
ORDER BY query_count DESC;

8.2 Caching Strategies
-- Enable result caching
ALTER SESSION SET USE_CACHED_RESULT = TRUE;

-- Create materialized views for common BI queries
CREATE MATERIALIZED VIEW analytics_db.bi_cache.daily_summary AS
SELECT
 order_date,
 region,
 category,
 SUM(amount) AS total_revenue,
 COUNT(*) AS order_count
FROM facts.fact_sales f
JOIN dims.dim_date d ON f.date_key = d.date_key
GROUP BY order_date, region, category;

-- Pre-warm cache with scheduled task
CREATE TASK bi_cache_warm_task
 WAREHOUSE = bi_wh
 SCHEDULE = 'USING CRON 0 5 * * * UTC'
AS
SELECT * FROM analytics_db.bi_cache.daily_summary
WHERE order_date >= DATEADD('year', -1, CURRENT_DATE());

9. Best Practices
9.1 BI Integration ChecklistPracticeDescriptionDedicated warehouseSeparate BI queries from ETLSemantic layerCreate BI-friendly viewsQuery taggingTrack BI tool usageResult cachingEnable for repeated queriesAggregation tablesPre-aggregate for dashboardsConnection poolingUse in multi-user scenarios
9.2 Warehouse Sizing for BI
-- Monitor BI warehouse utilization
SELECT
 DATE_TRUNC('hour', start_time) AS hour,
 COUNT(*) AS query_count,
 AVG(total_elapsed_time) / 1000 AS avg_duration_sec,
 MAX(queued_provisioning_time) / 1000 AS max_queue_time_sec
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE warehouse_name = 'BI_WH'
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY DATE_TRUNC('hour', start_time)
ORDER BY hour DESC;

-- If queue times are high, increase cluster count
ALTER WAREHOUSE bi_wh SET MAX_CLUSTER_COUNT = 5;

Document ControlVersionDateAuthorChanges1.02025-01-29Analytics TeamInitial document
This document is maintained by the Analytics Team.

