Snowflake Dashboard Design & Analytics Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerAnalytics Team
1. Executive Summary
Effective dashboard design requires optimized data structures, efficient query patterns, and thoughtful visualization strategies. This guide covers Snowflake-specific patterns for building performant analytics dashboards.
2. Dashboard Data Architecture
┌───┐
│ DASHBOARD DATA ARCHITECTURE │
├───┤
│ │
│ DATA LAYERS │
│ │
│ ┌───┐ │
│ │ SOURCE DATA (Gold Layer) │ │
│ │ ┌───┐ │ │
│ │ │ facts.fact_sales dims.dim_customer dims.dim_product │ │ │
│ │ │ (100M+ rows) (1M rows) (100K rows) │ │ │
│ │ └───┘ │ │
│ └────────────────────────────────────┬────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ SEMANTIC LAYER │ │
│ │ ┌───┐ │ │
│ │ │ Views with business logic, joins, calculated metrics │ │ │
│ │ │ semantic.sales_with_dimensions │ │ │
│ │ └───┘ │ │
│ └────────────────────────────────────┬────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ DASHBOARD LAYER (Pre-aggregated) │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ KPI Summary │ │ Daily Trends │ │ Comparisons │ │ │
│ │ │ (1 row) │ │ (365 rows) │ │ (regions) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ │ │ │
│ │ • Materialized Views for static aggregations │ │
│ │ • Dynamic Tables for near-real-time │ │
│ │ • Scheduled refresh for periodic updates │ │
│ └───┘ │
│ │
└───┘

3. KPI Dashboard Design
3.1 Executive KPI Layer
-- Create KPI summary table (refresh daily)
CREATE OR REPLACE TABLE dashboard.kpi_summary AS
WITH current_period AS (
 SELECT
 SUM(amount) AS current_revenue,
 COUNT(DISTINCT order_id) AS current_orders,
 COUNT(DISTINCT customer_id) AS current_customers,
 AVG(amount) AS current_aov
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 WHERE d.full_date >= DATE_TRUNC('month', CURRENT_DATE())
),
prior_period AS (
 SELECT
 SUM(amount) AS prior_revenue,
 COUNT(DISTINCT order_id) AS prior_orders,
 COUNT(DISTINCT customer_id) AS prior_customers,
 AVG(amount) AS prior_aov
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 WHERE d.full_date >= DATE_TRUNC('month', DATEADD('month', -1, CURRENT_DATE()))
 AND d.full_date < DATE_TRUNC('month', CURRENT_DATE())
),
ytd AS (
 SELECT
 SUM(amount) AS ytd_revenue,
 COUNT(DISTINCT order_id) AS ytd_orders
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 WHERE d.year = YEAR(CURRENT_DATE())
)
SELECT
 CURRENT_TIMESTAMP() AS refresh_time,
 -- Current period KPIs
 cp.current_revenue,
 cp.current_orders,
 cp.current_customers,
 cp.current_aov,
 -- Growth rates
 ROUND((cp.current_revenue - pp.prior_revenue) / NULLIF(pp.prior_revenue, 0) * 100, 2) AS revenue_growth_pct,
 ROUND((cp.current_orders - pp.prior_orders) / NULLIF(pp.prior_orders, 0) * 100, 2) AS order_growth_pct,
 -- YTD
 ytd.ytd_revenue,
 ytd.ytd_orders
FROM current_period cp
CROSS JOIN prior_period pp
CROSS JOIN ytd;

-- Schedule refresh
CREATE TASK refresh_kpi_summary
 WAREHOUSE = dashboard_wh
 SCHEDULE = 'USING CRON 0 6 * * * UTC'
AS
CREATE OR REPLACE TABLE dashboard.kpi_summary AS
-- (Same query as above)
;

3.2 Trend Analysis Layer
-- Daily trends for time series charts
CREATE OR REPLACE DYNAMIC TABLE dashboard.daily_trends
 TARGET_LAG = '1 hour'
 WAREHOUSE = dashboard_wh
AS
SELECT
 d.full_date AS date,
 d.day_name,
 d.is_weekend,
 c.region,
 p.category,
 COUNT(DISTINCT f.order_id) AS orders,
 COUNT(DISTINCT f.customer_sk) AS customers,
 SUM(f.amount) AS revenue,
 SUM(f.quantity) AS units,
 AVG(f.amount) AS avg_order_value
FROM facts.fact_sales f
JOIN dims.dim_date d ON f.date_key = d.date_key
JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk AND c.is_current = TRUE
JOIN dims.dim_product p ON f.product_sk = p.product_sk
WHERE d.full_date >= DATEADD('year', -2, CURRENT_DATE())
GROUP BY d.full_date, d.day_name, d.is_weekend, c.region, p.category;

-- Monthly summary for period comparisons
CREATE OR REPLACE DYNAMIC TABLE dashboard.monthly_summary
 TARGET_LAG = '1 hour'
 WAREHOUSE = dashboard_wh
AS
SELECT
 DATE_TRUNC('month', date) AS month,
 region,
 category,
 SUM(orders) AS total_orders,
 SUM(customers) AS total_customers,
 SUM(revenue) AS total_revenue,
 SUM(units) AS total_units,
 SUM(revenue) / NULLIF(SUM(orders), 0) AS avg_order_value,
 -- Period over period
 LAG(SUM(revenue)) OVER (PARTITION BY region, category ORDER BY DATE_TRUNC('month', date)) AS prev_month_revenue,
 LAG(SUM(revenue), 12) OVER (PARTITION BY region, category ORDER BY DATE_TRUNC('month', date)) AS prev_year_revenue
FROM dashboard.daily_trends
GROUP BY DATE_TRUNC('month', date), region, category;

3.3 Comparison Metrics
-- Year-over-year comparison view
CREATE OR REPLACE VIEW dashboard.yoy_comparison AS
SELECT
 current_year.month,
 current_year.region,
 current_year.category,
 current_year.total_revenue AS current_year_revenue,
 prior_year.total_revenue AS prior_year_revenue,
 ROUND((current_year.total_revenue - prior_year.total_revenue) /
 NULLIF(prior_year.total_revenue, 0) * 100, 2) AS yoy_growth_pct
FROM (
 SELECT
 MONTH(date) AS month,
 region,
 category,
 SUM(revenue) AS total_revenue
 FROM dashboard.daily_trends
 WHERE YEAR(date) = YEAR(CURRENT_DATE())
 GROUP BY MONTH(date), region, category
) current_year
LEFT JOIN (
 SELECT
 MONTH(date) AS month,
 region,
 category,
 SUM(revenue) AS total_revenue
 FROM dashboard.daily_trends
 WHERE YEAR(date) = YEAR(CURRENT_DATE()) - 1
 GROUP BY MONTH(date), region, category
) prior_year ON current_year.month = prior_year.month
 AND current_year.region = prior_year.region
 AND current_year.category = prior_year.category;

-- Regional benchmarking
CREATE OR REPLACE VIEW dashboard.regional_benchmark AS
SELECT
 region,
 SUM(revenue) AS total_revenue,
 SUM(revenue) * 100.0 / SUM(SUM(revenue)) OVER () AS revenue_share_pct,
 SUM(orders) AS total_orders,
 SUM(revenue) / NULLIF(SUM(orders), 0) AS avg_order_value,
 AVG(SUM(revenue) / NULLIF(SUM(orders), 0)) OVER () AS company_avg_aov,
 (SUM(revenue) / NULLIF(SUM(orders), 0)) - AVG(SUM(revenue) / NULLIF(SUM(orders), 0)) OVER () AS aov_vs_avg
FROM dashboard.daily_trends
WHERE date >= DATEADD('month', -3, CURRENT_DATE())
GROUP BY region;

4. Operational Dashboards
4.1 Real-Time Operations
-- Near real-time metrics using Dynamic Tables
CREATE OR REPLACE DYNAMIC TABLE dashboard.realtime_metrics
 TARGET_LAG = '5 minutes'
 WAREHOUSE = realtime_wh
AS
SELECT
 DATE_TRUNC('hour', order_timestamp) AS hour,
 region,
 COUNT(*) AS orders_this_hour,
 SUM(amount) AS revenue_this_hour,
 AVG(amount) AS avg_order_value,
 COUNT(DISTINCT customer_id) AS unique_customers
FROM raw.orders_stream -- Assuming stream on orders table
WHERE order_timestamp >= DATEADD('day', -1, CURRENT_TIMESTAMP())
GROUP BY DATE_TRUNC('hour', order_timestamp), region;

-- Order pipeline status
CREATE OR REPLACE VIEW dashboard.order_pipeline AS
SELECT
 order_status,
 COUNT(*) AS order_count,
 SUM(amount) AS total_value,
 AVG(TIMESTAMPDIFF('hour', order_timestamp, CURRENT_TIMESTAMP())) AS avg_age_hours
FROM raw.orders
WHERE order_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY order_status;

4.2 Inventory Dashboard
-- Inventory snapshot
CREATE OR REPLACE VIEW dashboard.inventory_status AS
SELECT
 p.product_name,
 p.category,
 i.quantity_on_hand,
 i.quantity_reserved,
 i.quantity_on_hand - i.quantity_reserved AS available_quantity,
 i.reorder_point,
 CASE
 WHEN i.quantity_on_hand - i.quantity_reserved <= 0 THEN 'Out of Stock'
 WHEN i.quantity_on_hand - i.quantity_reserved < i.reorder_point THEN 'Low Stock'
 ELSE 'In Stock'
 END AS stock_status,
 s.avg_daily_sales,
 ROUND((i.quantity_on_hand - i.quantity_reserved) / NULLIF(s.avg_daily_sales, 0), 0) AS days_of_supply
FROM inventory i
JOIN dims.dim_product p ON i.product_id = p.product_id
LEFT JOIN (
 SELECT
 product_id,
 AVG(quantity) AS avg_daily_sales
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 WHERE d.full_date >= DATEADD('day', -30, CURRENT_DATE())
 GROUP BY product_id
) s ON i.product_id = s.product_id;

5. Analytical Dashboards
5.1 Customer Analytics
-- Customer segmentation dashboard
CREATE OR REPLACE VIEW dashboard.customer_segments AS
WITH customer_metrics AS (
 SELECT
 customer_id,
 COUNT(DISTINCT order_id) AS lifetime_orders,
 SUM(amount) AS lifetime_value,
 MIN(order_date) AS first_order_date,
 MAX(order_date) AS last_order_date,
 DATEDIFF('day', MAX(order_date), CURRENT_DATE()) AS days_since_last_order
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 JOIN dims.dim_customer c ON f.customer_sk = c.customer_sk
 GROUP BY customer_id
)
SELECT
 customer_id,
 lifetime_orders,
 lifetime_value,
 days_since_last_order,
 -- RFM Segmentation
 CASE
 WHEN days_since_last_order <= 30 AND lifetime_orders >= 10 AND lifetime_value >= 5000 THEN 'Champions'
 WHEN days_since_last_order <= 30 AND lifetime_value >= 2000 THEN 'Loyal Customers'
 WHEN days_since_last_order <= 60 AND lifetime_orders >= 5 THEN 'Potential Loyalists'
 WHEN days_since_last_order <= 30 AND lifetime_orders = 1 THEN 'New Customers'
 WHEN days_since_last_order > 180 AND lifetime_value >= 2000 THEN 'At Risk'
 WHEN days_since_last_order > 365 THEN 'Lost'
 ELSE 'Need Attention'
 END AS customer_segment
FROM customer_metrics;

-- Cohort analysis
CREATE OR REPLACE VIEW dashboard.cohort_analysis AS
WITH first_purchase AS (
 SELECT
 customer_id,
 DATE_TRUNC('month', MIN(order_date)) AS cohort_month
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 GROUP BY customer_id
),
monthly_activity AS (
 SELECT
 f.customer_id,
 DATE_TRUNC('month', d.full_date) AS activity_month
 FROM facts.fact_sales f
 JOIN dims.dim_date d ON f.date_key = d.date_key
 GROUP BY f.customer_id, DATE_TRUNC('month', d.full_date)
)
SELECT
 fp.cohort_month,
 DATEDIFF('month', fp.cohort_month, ma.activity_month) AS months_since_first_purchase,
 COUNT(DISTINCT ma.customer_id) AS active_customers,
 COUNT(DISTINCT ma.customer_id) * 100.0 /
 COUNT(DISTINCT CASE WHEN ma.activity_month = fp.cohort_month THEN ma.customer_id END)
 OVER (PARTITION BY fp.cohort_month) AS retention_rate
FROM first_purchase fp
JOIN monthly_activity ma ON fp.customer_id = ma.customer_id
GROUP BY fp.cohort_month, DATEDIFF('month', fp.cohort_month, ma.activity_month);

5.2 Product Analytics
-- Product performance dashboard
CREATE OR REPLACE VIEW dashboard.product_performance AS
SELECT
 p.product_id,
 p.product_name,
 p.category,
 p.subcategory,
 COUNT(DISTINCT f.order_id) AS orders,
 SUM(f.quantity) AS units_sold,
 SUM(f.amount) AS revenue,
 SUM(f.amount - f.quantity * p.unit_cost) AS profit,
 ROUND(SUM(f.amount - f.quantity * p.unit_cost) / NULLIF(SUM(f.amount), 0) * 100, 2) AS profit_margin_pct,
 -- Rankings
 RANK() OVER (ORDER BY SUM(f.amount) DESC) AS revenue_rank,
 RANK() OVER (PARTITION BY p.category ORDER BY SUM(f.amount) DESC) AS category_rank
FROM facts.fact_sales f
JOIN dims.dim_product p ON f.product_sk = p.product_sk
JOIN dims.dim_date d ON f.date_key = d.date_key
WHERE d.full_date >= DATEADD('month', -3, CURRENT_DATE())
GROUP BY p.product_id, p.product_name, p.category, p.subcategory, p.unit_cost;

-- Product affinity (frequently bought together)
CREATE OR REPLACE VIEW dashboard.product_affinity AS
WITH order_products AS (
 SELECT
 order_id,
 product_id
 FROM facts.fact_sales
)
SELECT
 p1.product_id AS product_a,
 p2.product_id AS product_b,
 COUNT(*) AS co_occurrence,
 COUNT(*) * 1.0 / (SELECT COUNT(DISTINCT order_id) FROM order_products) AS support
FROM order_products p1
JOIN order_products p2 ON p1.order_id = p2.order_id AND p1.product_id < p2.product_id
GROUP BY p1.product_id, p2.product_id
HAVING COUNT(*) >= 10
ORDER BY co_occurrence DESC;

6. Performance Optimization
6.1 Dashboard-Specific Optimization
-- 1. Cluster dashboard tables
ALTER TABLE dashboard.daily_trends CLUSTER BY (date, region);

-- 2. Create materialized views for expensive aggregations
CREATE MATERIALIZED VIEW dashboard.mv_category_performance AS
SELECT
 category,
 DATE_TRUNC('month', date) AS month,
 SUM(revenue) AS total_revenue,
 SUM(orders) AS total_orders
FROM dashboard.daily_trends
GROUP BY category, DATE_TRUNC('month', date);

-- 3. Use search optimization for filter columns
ALTER TABLE dashboard.daily_trends ADD SEARCH OPTIMIZATION ON EQUALITY(region, category);

-- 4. Pre-calculate common filter combinations
CREATE TABLE dashboard.filter_combinations AS
SELECT DISTINCT
 region,
 category,
 DATE_TRUNC('month', date) AS month
FROM dashboard.daily_trends;

6.2 Query Optimization for Dashboards
-- Optimize common dashboard queries
-- Use EXPLAIN to verify query plans

EXPLAIN
SELECT
 date,
 SUM(revenue) AS daily_revenue
FROM dashboard.daily_trends
WHERE region = 'North America'
 AND date >= DATEADD('month', -1, CURRENT_DATE())
GROUP BY date;

-- Check if partition pruning is effective
-- Look for "Partitions scanned" vs "Partitions total"

7. Best Practices
7.1 Dashboard Design ChecklistPracticeDescriptionPre-aggregateCreate summary tables at dashboard grainUse Dynamic TablesFor near-real-time updatesCluster dataOn common filter/sort columnsLimit cardinalityReduce distinct values in filtersCache resultsUse result caching for repeated queriesSeparate warehouseIsolate dashboard queries from ETL
7.2 Refresh Strategy
-- Tiered refresh strategy
-- Tier 1: Real-time (Dynamic Tables, 5-15 min lag)
-- Tier 2: Near-real-time (Tasks, hourly)
-- Tier 3: Batch (Tasks, daily)

-- Example: Coordinated refresh task graph
CREATE TASK refresh_daily_trends
 WAREHOUSE = dashboard_wh
 SCHEDULE = 'USING CRON 0 5 * * * UTC'
AS
ALTER DYNAMIC TABLE dashboard.daily_trends REFRESH;

CREATE TASK refresh_kpis
 WAREHOUSE = dashboard_wh
 AFTER refresh_daily_trends
AS
CREATE OR REPLACE TABLE dashboard.kpi_summary AS (/* query */);

ALTER TASK refresh_daily_trends RESUME;

Document ControlVersionDateAuthorChanges1.02025-01-29Analytics TeamInitial document
This document is maintained by the Analytics Team.

