Snowflake Streamlit in Snowflake Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerAnalytics Team
1. Executive Summary
Streamlit in Snowflake enables building interactive data applications directly within Snowflake using Python. This guide covers creating Streamlit apps, connecting to Snowflake data, and best practices for building production-ready analytics applications.
2. Streamlit in Snowflake Architecture
┌───┐
│ STREAMLIT IN SNOWFLAKE │
├───┤
│ │
│ USER BROWSER SNOWFLAKE │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ │ │ │ │
│ │ ┌───────────────────────┐ │ HTTPS │ ┌───────────────────────┐ │ │
│ │ │ Streamlit UI │ │◄────────►│ │ Streamlit Runtime │ │ │
│ │ │ │ │ │ │ (Serverless) │ │ │
│ │ │ • Interactive │ │ │ │ │ │ │
│ │ │ • Charts/Tables │ │ │ │ • Python execution │ │ │
│ │ │ • Filters/Inputs │ │ │ │ • Session state │ │ │
│ │ └───────────────────────┘ │ │ │ • Caching │ │ │
│ │ │ │ └───────────┬───────────┘ │ │
│ └─────────────────────────────┘ │ │ │ │
│ │ │ Snowpark │ │
│ │ ▼ │ │
│ BENEFITS: │ ┌───────────────────────┐ │ │
│ • No infrastructure to manage │ │ Snowflake Data │ │ │
│ • Built-in authentication │ │ │ │ │
│ • Secure data access │ │ • Tables/Views │ │ │
│ • Role-based access control │ │ • Dynamic Tables │ │ │
│ • Auto-scaling │ │ • External Data │ │ │
│ │ └───────────────────────┘ │ │
│ │ │ │
│ └─────────────────────────────┘ │
│ │
└───┘

3. Creating Streamlit Apps
3.1 Basic App Structure
Streamlit in Snowflake app template
import streamlit as st
from snowflake.snowpark.context import get_active_session

Get Snowflake session (automatic in SiS)
session = get_active_session()

Page configuration
st.set_page_config(
 page_title="Sales Analytics",
 page_icon="📊",
 layout="wide"
)

Title
st.title("📊 Sales Analytics Dashboard")

Sidebar filters
st.sidebar.header("Filters")

Query data
@st.cache_data(ttl=600) # Cache for 10 minutes
def load_data():
 df = session.sql("""
 SELECT
 order_date,
 region,
 category,
 SUM(amount) as total_sales,
 COUNT(*) as order_count
 FROM analytics_db.facts.sales
 WHERE order_date >= DATEADD('year', -1, CURRENT_DATE())
 GROUP BY order_date, region, category
 """).to_pandas()
 return df

Load data
data = load_data()

Display metrics
col1, col2, col3 = st.columns(3)
with col1:
 st.metric("Total Revenue", f"${data['TOTAL_SALES'].sum():,.2f}")
with col2:
 st.metric("Total Orders", f"{data['ORDER_COUNT'].sum():,}")
with col3:
 st.metric("Avg Order Value", f"${data['TOTAL_SALES'].sum() / data['ORDER_COUNT'].sum():,.2f}")

Chart
st.subheader("Sales by Region")
st.bar_chart(data.groupby('REGION')['TOTAL_SALES'].sum())

3.2 Interactive Filters
import streamlit as st
from snowflake.snowpark.context import get_active_session
import pandas as pd

session = get_active_session()

st.title("Interactive Sales Explorer")

Sidebar filters
st.sidebar.header("Filters")

Date range filter
col1, col2 = st.sidebar.columns(2)
with col1:
 start_date = st.date_input("Start Date", value=pd.Timestamp.now() - pd.Timedelta(days=365))
with col2:
 end_date = st.date_input("End Date", value=pd.Timestamp.now())

Get unique regions for filter
@st.cache_data(ttl=3600)
def get_regions():
 return session.sql("SELECT DISTINCT region FROM analytics_db.dims.regions ORDER BY region").to_pandas()

regions_df = get_regions()
selected_regions = st.sidebar.multiselect(
 "Select Regions",
 options=regions_df['REGION'].tolist(),
 default=regions_df['REGION'].tolist()
)

Get unique categories
@st.cache_data(ttl=3600)
def get_categories():
 return session.sql("SELECT DISTINCT category FROM analytics_db.dims.products ORDER BY category").to_pandas()

categories_df = get_categories()
selected_categories = st.sidebar.multiselect(
 "Select Categories",
 options=categories_df['CATEGORY'].tolist(),
 default=categories_df['CATEGORY'].tolist()
)

Build dynamic query
def load_filtered_data(start, end, regions, categories):
 # Convert lists to SQL-safe strings
 regions_str = "', '".join(regions) if regions else "''"
 categories_str = "', '".join(categories) if categories else "''"

 query = f"""
 SELECT
 order_date,
 region,
 category,
 SUM(amount) as total_sales,
 COUNT(*) as order_count
 FROM analytics_db.facts.sales f
 JOIN analytics_db.dims.customers c ON f.customer_sk = c.customer_sk
 JOIN analytics_db.dims.products p ON f.product_sk = p.product_sk
 WHERE order_date BETWEEN '{start}' AND '{end}'
 AND c.region IN ('{regions_str}')
 AND p.category IN ('{categories_str}')
 GROUP BY order_date, region, category
 """
 return session.sql(query).to_pandas()

Load filtered data
if selected_regions and selected_categories:
 data = load_filtered_data(start_date, end_date, selected_regions, selected_categories)

 # Display data
 st.dataframe(data, use_container_width=True)
else:
 st.warning("Please select at least one region and category")

3.3 Charts and Visualizations
import streamlit as st
from snowflake.snowpark.context import get_active_session
import plotly.express as px
import altair as alt

session = get_active_session()

st.title("Sales Visualizations")

Load data
@st.cache_data(ttl=600)
def load_sales_data():
 return session.sql("""
 SELECT
 DATE_TRUNC('day', order_date) as date,
 region,
 category,
 SUM(amount) as revenue,
 COUNT(*) as orders
 FROM analytics_db.facts.sales
 WHERE order_date >= DATEADD('month', -3, CURRENT_DATE())
 GROUP BY 1, 2, 3
 """).to_pandas()

data = load_sales_data()

Tabs for different charts
tab1, tab2, tab3 = st.tabs(["Time Series", "By Region", "By Category"])

with tab1:
 st.subheader("Revenue Over Time")
 # Plotly line chart
 daily_revenue = data.groupby('DATE')['REVENUE'].sum().reset_index()
 fig = px.line(daily_revenue, x='DATE', y='REVENUE', title='Daily Revenue')
 st.plotly_chart(fig, use_container_width=True)

with tab2:
 st.subheader("Revenue by Region")
 # Altair chart
 region_data = data.groupby('REGION')['REVENUE'].sum().reset_index()
 chart = alt.Chart(region_data).mark_bar().encode(
 x='REGION',
 y='REVENUE',
 color='REGION'
).properties(width='container')
 st.altair_chart(chart, use_container_width=True)

with tab3:
 st.subheader("Revenue by Category")
 # Plotly pie chart
 category_data = data.groupby('CATEGORY')['REVENUE'].sum().reset_index()
 fig = px.pie(category_data, values='REVENUE', names='CATEGORY', title='Revenue Distribution')
 st.plotly_chart(fig, use_container_width=True)

4. Data Interaction
4.1 Forms and Data Input
import streamlit as st
from snowflake.snowpark.context import get_active_session
from datetime import datetime

session = get_active_session()

st.title("Data Entry Form")

Form for data input
with st.form("data_entry_form"):
 st.subheader("Add New Record")

 col1, col2 = st.columns(2)
 with col1:
 customer_name = st.text_input("Customer Name")
 email = st.text_input("Email")
 with col2:
 region = st.selectbox("Region", ["North America", "Europe", "Asia Pacific"])
 segment = st.selectbox("Segment", ["Enterprise", "Mid-Market", "SMB"])

 notes = st.text_area("Notes")

 submitted = st.form_submit_button("Submit")

 if submitted:
 if customer_name and email:
 # Insert data using Snowpark
 session.sql(f"""
 INSERT INTO analytics_db.staging.customer_requests
 (customer_name, email, region, segment, notes, submitted_at)
 VALUES ('{customer_name}', '{email}', '{region}', '{segment}',
 '{notes}', CURRENT_TIMESTAMP())
 """).collect()

 st.success("Record submitted successfully!")
 else:
 st.error("Please fill in required fields")

4.2 File Upload Processing
import streamlit as st
from snowflake.snowpark.context import get_active_session
import pandas as pd

session = get_active_session()

st.title("File Upload Processor")

uploaded_file = st.file_uploader("Upload CSV file", type=['csv'])

if uploaded_file is not None:
 # Read uploaded file
 df = pd.read_csv(uploaded_file)

 st.subheader("Preview")
 st.dataframe(df.head(10))

 st.subheader("Data Summary")
 st.write(f"Rows: {len(df)}")
 st.write(f"Columns: {list(df.columns)}")

 if st.button("Load to Snowflake"):
 with st.spinner("Loading data..."):
 # Convert pandas to Snowpark DataFrame and write
 snowpark_df = session.create_dataframe(df)
 snowpark_df.write.mode("append").save_as_table("analytics_db.staging.uploaded_data")

 st.success(f"Successfully loaded {len(df)} rows!")

5. Advanced Features
5.1 Session State
import streamlit as st
from snowflake.snowpark.context import get_active_session

session = get_active_session()

Initialize session state
if 'selected_items' not in st.session_state:
 st.session_state.selected_items = []
if 'analysis_run' not in st.session_state:
 st.session_state.analysis_run = False

st.title("Analysis Workflow")

Step 1: Select items
st.subheader("Step 1: Select Items")
items = session.sql("SELECT DISTINCT product_name FROM products LIMIT 50").to_pandas()

selected = st.multiselect(
 "Select products to analyze",
 options=items['PRODUCT_NAME'].tolist(),
 default=st.session_state.selected_items
)

if st.button("Save Selection"):
 st.session_state.selected_items = selected
 st.success(f"Saved {len(selected)} items")

Step 2: Run analysis
st.subheader("Step 2: Run Analysis")
if st.session_state.selected_items:
 if st.button("Run Analysis"):
 with st.spinner("Running analysis..."):
 # Perform analysis
 products_str = "', '".join(st.session_state.selected_items)
 results = session.sql(f"""
 SELECT
 product_name,
 SUM(quantity) as total_units,
 SUM(amount) as total_revenue
 FROM sales s
 JOIN products p ON s.product_id = p.product_id
 WHERE p.product_name IN ('{products_str}')
 GROUP BY product_name
 """).to_pandas()

 st.session_state.analysis_run = True
 st.session_state.results = results

 # Show results if analysis was run
 if st.session_state.analysis_run:
 st.subheader("Results")
 st.dataframe(st.session_state.results)
else:
 st.info("Please select items first")

5.2 Multi-Page Apps
Main app file structure for multi-page apps:
pages/
1_Dashboard.py
2_Analytics.py
3_Settings.py

Home.py (main page)
import streamlit as st

st.set_page_config(
 page_title="Analytics Hub",
 page_icon="📊",
 layout="wide"
)

st.title("📊 Analytics Hub")
st.markdown("""
Welcome to the Analytics Hub! Use the sidebar to navigate:

- **Dashboard**: Overview metrics and KPIs
- **Analytics**: Deep-dive analysis
- **Settings**: Configure preferences
""")

pages/1_Dashboard.py
import streamlit as st
from snowflake.snowpark.context import get_active_session

session = get_active_session()

st.title("Dashboard")
Dashboard content...

pages/2_Analytics.py
import streamlit as st
from snowflake.snowpark.context import get_active_session

session = get_active_session()

st.title("Analytics")
Analytics content...

6. Deployment and Security
6.1 Deploying Apps
-- Create Streamlit app from SQL
CREATE STREAMLIT sales_dashboard
 ROOT_LOCATION = '@analytics_db.apps.streamlit_stage/sales_dashboard'
 MAIN_FILE = '/main.py'
 QUERY_WAREHOUSE = bi_wh;

-- Grant access to app
GRANT USAGE ON STREAMLIT sales_dashboard TO ROLE analyst_role;

-- View apps
SHOW STREAMLITS;

-- Describe app
DESCRIBE STREAMLIT sales_dashboard;

-- Drop app
DROP STREAMLIT sales_dashboard;

6.2 App Configuration
requirements.txt for app dependencies
(Place in app directory)
"""
pandas
plotly
altair
"""

environment.yml for conda packages
"""
name: streamlit_app
channels:
 - snowflake
dependencies:
 - pandas
 - plotly
"""

6.3 Security Best Practices
Use parameterized queries to prevent SQL injection
def safe_query(session, table_name, filter_value):
 # GOOD: Use Snowpark's safe query building
 df = session.table(table_name).filter(col("status") == filter_value)
 return df.to_pandas()

 # BAD: String interpolation (SQL injection risk)
 # query = f"SELECT * FROM {table_name} WHERE status = '{filter_value}'"

Access control via Snowflake roles
Users inherit permissions from their Snowflake role
No need to manage separate app authentication

Audit user actions
import streamlit as st
from snowflake.snowpark.context import get_active_session

session = get_active_session()

Log user actions
def log_action(action_type, details):
 user = session.sql("SELECT CURRENT_USER()").collect()[0][0]
 session.sql(f"""
 INSERT INTO audit.app_actions (user_name, action_type, details, timestamp)
 VALUES ('{user}', '{action_type}', '{details}', CURRENT_TIMESTAMP())
 """).collect()

7. Best Practices
7.1 Performance Optimization
1. Use caching effectively
@st.cache_data(ttl=600) # Cache for 10 minutes
def load_reference_data():
 return session.sql("SELECT * FROM dim_regions").to_pandas()

@st.cache_resource # Cache connection/heavy resources
def get_model():
 # Load ML model or other heavy resources
 pass

2. Limit data returned
def load_data(limit=1000):
 return session.sql(f"SELECT * FROM large_table LIMIT {limit}").to_pandas()

3. Use aggregations in SQL, not Python
GOOD: Aggregate in Snowflake
df = session.sql("""
 SELECT region, SUM(amount) as total
 FROM sales GROUP BY region
""").to_pandas()

BAD: Load all data then aggregate in Python
df = session.sql("SELECT * FROM sales").to_pandas()
df.groupby('region')['amount'].sum()

4. Progressive loading
if st.button("Load More Data"):
 # Load additional data on demand
 pass

7.2 App Design GuidelinesPracticeDescriptionClear navigationUse tabs, sidebars, and headersResponsive layoutUse columns and containersLoading indicatorsShow spinners for long operationsError handlingDisplay user-friendly error messagesInput validationValidate user inputs before queriesCachingCache expensive queries appropriately
Document ControlVersionDateAuthorChanges1.02025-01-29Analytics TeamInitial document
This document is maintained by the Analytics Team.

