Snowflake Cortex AI Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Science Team
1. Executive Summary
Snowflake Cortex provides AI-powered functions including Large Language Models (LLMs), text analytics, and document processing capabilities directly within Snowflake. This guide covers Cortex LLM functions, AI-powered analytics, and best practices for enterprise AI applications.
2. Cortex AI Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    SNOWFLAKE CORTEX AI                                       │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                    LLM FUNCTIONS                                     │    │
│  │                                                                      │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │   COMPLETE      │  │   SUMMARIZE     │  │   TRANSLATE     │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │ • Text gen      │  │ • Summarization │  │ • Multi-language│     │    │
│  │  │ • Chat/QA       │  │ • Key points    │  │ • 25+ languages │     │    │
│  │  │ • Analysis      │  │ • Abstractive   │  │                 │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  │                                                                      │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │   SENTIMENT     │  │   CLASSIFY      │  │   EXTRACT       │     │    │
│  │  │                 │  │                 │  │   ANSWER        │     │    │
│  │  │ • Score -1 to 1 │  │ • Categories    │  │                 │     │    │
│  │  │ • Multi-language│  │ • Custom labels │  │ • QA from docs  │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                    SUPPORTED MODELS                                  │    │
│  │                                                                      │    │
│  │  • mistral-large     - Most capable, complex reasoning              │    │
│  │  • mistral-7b        - Fast, efficient for simple tasks             │    │
│  │  • llama3-70b        - Strong general-purpose model                 │    │
│  │  • llama3-8b         - Smaller, faster variant                      │    │
│  │  • snowflake-arctic  - Snowflake's enterprise LLM                   │    │
│  │                                                                      │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
│  BENEFITS:                                                                  │
│  • No data leaves Snowflake                                                │
│  • Enterprise security and governance                                      │
│  • Pay-per-use pricing                                                     │
│  • SQL interface for AI                                                    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

3. LLM Functions
3.1 COMPLETE Function
-- Basic text completion
SELECT SNOWFLAKE.CORTEX.COMPLETE(
    'mistral-large',
    'Explain cloud data warehousing in simple terms:'
) AS response;

-- With system prompt for role-based responses
SELECT SNOWFLAKE.CORTEX.COMPLETE(
    'mistral-large',
    [
        {'role': 'system', 'content': 'You are a helpful data analyst assistant. Provide concise, technical answers.'},
        {'role': 'user', 'content': 'What are the best practices for SQL query optimization?'}
    ]
) AS response;

-- Batch processing customer inquiries
SELECT
    inquiry_id,
    customer_question,
    SNOWFLAKE.CORTEX.COMPLETE(
        'mistral-7b',
        CONCAT(
            'You are a customer service assistant. Answer the following question helpfully and concisely:\n\n',
            customer_question
        )
    ) AS ai_response
FROM customer_inquiries
WHERE response_needed = TRUE;

-- Structured output generation
SELECT
    product_id,
    description,
    SNOWFLAKE.CORTEX.COMPLETE(
        'mistral-large',
        CONCAT(
            'Extract key features from this product description and return as JSON with keys: category, features (array), target_audience.\n\nDescription: ',
            description
        )
    ) AS structured_features
FROM products;

3.2 SUMMARIZE Function
-- Summarize long text
SELECT
    document_id,
    SNOWFLAKE.CORTEX.SUMMARIZE(document_text) AS summary
FROM documents
WHERE LENGTH(document_text) > 1000;

-- Summarize customer feedback
SELECT
    product_id,
    SNOWFLAKE.CORTEX.SUMMARIZE(
        LISTAGG(review_text, '\n\n') WITHIN GROUP (ORDER BY review_date DESC)
    ) AS feedback_summary
FROM product_reviews
GROUP BY product_id;

-- Meeting notes summarization
SELECT
    meeting_id,
    meeting_date,
    SNOWFLAKE.CORTEX.SUMMARIZE(transcript) AS meeting_summary
FROM meeting_transcripts
WHERE meeting_date >= DATEADD('week', -1, CURRENT_DATE());

3.3 SENTIMENT Function
-- Analyze sentiment of reviews
SELECT
    review_id,
    review_text,
    SNOWFLAKE.CORTEX.SENTIMENT(review_text) AS sentiment_score,
    CASE
        WHEN SNOWFLAKE.CORTEX.SENTIMENT(review_text) >= 0.3 THEN 'Positive'
        WHEN SNOWFLAKE.CORTEX.SENTIMENT(review_text) <= -0.3 THEN 'Negative'
        ELSE 'Neutral'
    END AS sentiment_label
FROM product_reviews;

-- Aggregate sentiment by product
SELECT
    product_id,
    product_name,
    COUNT(*) AS review_count,
    AVG(SNOWFLAKE.CORTEX.SENTIMENT(review_text)) AS avg_sentiment,
    SUM(CASE WHEN SNOWFLAKE.CORTEX.SENTIMENT(review_text) >= 0.3 THEN 1 ELSE 0 END) AS positive_count,
    SUM(CASE WHEN SNOWFLAKE.CORTEX.SENTIMENT(review_text) <= -0.3 THEN 1 ELSE 0 END) AS negative_count
FROM product_reviews r
JOIN products p ON r.product_id = p.product_id
GROUP BY product_id, product_name
ORDER BY avg_sentiment DESC;

-- Track sentiment trends over time
SELECT
    DATE_TRUNC('week', review_date) AS week,
    AVG(SNOWFLAKE.CORTEX.SENTIMENT(review_text)) AS avg_sentiment,
    COUNT(*) AS review_count
FROM product_reviews
WHERE review_date >= DATEADD('month', -3, CURRENT_DATE())
GROUP BY DATE_TRUNC('week', review_date)
ORDER BY week;

3.4 TRANSLATE Function
-- Translate text to different languages
SELECT
    content_id,
    original_text,
    SNOWFLAKE.CORTEX.TRANSLATE(original_text, 'en', 'es') AS spanish,
    SNOWFLAKE.CORTEX.TRANSLATE(original_text, 'en', 'fr') AS french,
    SNOWFLAKE.CORTEX.TRANSLATE(original_text, 'en', 'de') AS german
FROM marketing_content
WHERE needs_translation = TRUE;

-- Translate customer support tickets
SELECT
    ticket_id,
    detected_language,
    original_message,
    CASE
        WHEN detected_language != 'en' THEN
            SNOWFLAKE.CORTEX.TRANSLATE(original_message, detected_language, 'en')
        ELSE original_message
    END AS english_message
FROM support_tickets;

3.5 CLASSIFY_TEXT Function
-- Classify support tickets
SELECT
    ticket_id,
    ticket_text,
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        ticket_text,
        ['billing', 'technical_issue', 'feature_request', 'account_access', 'other']
    ):label::VARCHAR AS category,
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        ticket_text,
        ['billing', 'technical_issue', 'feature_request', 'account_access', 'other']
    ):probability::FLOAT AS confidence
FROM support_tickets;

-- Classify documents by topic
SELECT
    document_id,
    title,
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        content,
        ['finance', 'legal', 'hr', 'operations', 'marketing', 'technology']
    ):label::VARCHAR AS department
FROM documents;

-- Priority classification
SELECT
    ticket_id,
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        ticket_text,
        ['critical', 'high', 'medium', 'low']
    ):label::VARCHAR AS priority
FROM support_tickets
WHERE priority IS NULL;

3.6 EXTRACT_ANSWER Function
-- Extract answers from documents
SELECT
    SNOWFLAKE.CORTEX.EXTRACT_ANSWER(
        document_text,
        'What is the contract termination clause?'
    ):answer::VARCHAR AS answer,
    SNOWFLAKE.CORTEX.EXTRACT_ANSWER(
        document_text,
        'What is the contract termination clause?'
    ):score::FLOAT AS confidence
FROM contracts;

-- FAQ generation from documentation
SELECT
    doc_id,
    SNOWFLAKE.CORTEX.EXTRACT_ANSWER(content, 'What is the main purpose?'):answer AS purpose,
    SNOWFLAKE.CORTEX.EXTRACT_ANSWER(content, 'What are the key features?'):answer AS features,
    SNOWFLAKE.CORTEX.EXTRACT_ANSWER(content, 'How do you get started?'):answer AS getting_started
FROM product_documentation;

4. Advanced Use Cases
4.1 Conversational AI
-- Build conversation context
CREATE OR REPLACE TABLE ai.conversations (
    conversation_id VARCHAR,
    message_order NUMBER,
    role VARCHAR,  -- 'user' or 'assistant'
    content VARCHAR,
    created_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
);

-- Generate response with conversation history
WITH conversation_history AS (
    SELECT
        conversation_id,
        ARRAY_AGG(
            OBJECT_CONSTRUCT('role', role, 'content', content)
        ) WITHIN GROUP (ORDER BY message_order) AS messages
    FROM ai.conversations
    WHERE conversation_id = 'conv_123'
    GROUP BY conversation_id
)
SELECT
    SNOWFLAKE.CORTEX.COMPLETE(
        'mistral-large',
        ARRAY_CAT(
            [OBJECT_CONSTRUCT('role', 'system', 'content', 'You are a helpful assistant.')],
            messages
        )
    ) AS response
FROM conversation_history;

-- Stored procedure for chat
CREATE OR REPLACE PROCEDURE ai.chat(
    conversation_id VARCHAR,
    user_message VARCHAR
)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
    response VARCHAR;
    next_order NUMBER;
BEGIN
    -- Get next message order
    SELECT COALESCE(MAX(message_order), 0) + 1 INTO next_order
    FROM ai.conversations
    WHERE conversation_id = :conversation_id;

    -- Insert user message
    INSERT INTO ai.conversations (conversation_id, message_order, role, content)
    VALUES (:conversation_id, :next_order, 'user', :user_message);

    -- Generate response
    WITH history AS (
        SELECT ARRAY_AGG(OBJECT_CONSTRUCT('role', role, 'content', content))
               WITHIN GROUP (ORDER BY message_order) AS messages
        FROM ai.conversations
        WHERE conversation_id = :conversation_id
    )
    SELECT SNOWFLAKE.CORTEX.COMPLETE('mistral-large', messages) INTO response
    FROM history;

    -- Insert assistant response
    INSERT INTO ai.conversations (conversation_id, message_order, role, content)
    VALUES (:conversation_id, :next_order + 1, 'assistant', :response);

    RETURN response;
END;
$$;

4.2 Document Processing Pipeline
-- Create document processing pipeline
CREATE OR REPLACE TABLE ai.processed_documents AS
SELECT
    document_id,
    title,
    content,
    -- Summarization
    SNOWFLAKE.CORTEX.SUMMARIZE(content) AS summary,
    -- Key information extraction
    SNOWFLAKE.CORTEX.COMPLETE(
        'mistral-large',
        CONCAT('Extract key entities (people, organizations, dates, locations) from this text as JSON:\n\n', content)
    ) AS entities,
    -- Classification
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        content,
        ['contract', 'invoice', 'report', 'correspondence', 'policy']
    ):label::VARCHAR AS document_type,
    -- Sentiment
    SNOWFLAKE.CORTEX.SENTIMENT(content) AS sentiment_score,
    -- Processing metadata
    CURRENT_TIMESTAMP() AS processed_at
FROM raw_documents
WHERE processed_at IS NULL;

-- Schedule processing
CREATE TASK ai.process_new_documents
    WAREHOUSE = ai_wh
    SCHEDULE = '1 HOUR'
AS
INSERT INTO ai.processed_documents
SELECT /* processing query */
FROM raw_documents
WHERE document_id NOT IN (SELECT document_id FROM ai.processed_documents);

4.3 Semantic Search
-- Generate embeddings for semantic search
-- (Using Cortex embeddings when available)
CREATE OR REPLACE TABLE ai.document_embeddings AS
SELECT
    document_id,
    content,
    SNOWFLAKE.CORTEX.EMBED_TEXT(content) AS embedding
FROM documents;

-- Semantic similarity search
CREATE OR REPLACE FUNCTION ai.semantic_search(query_text VARCHAR, top_n NUMBER)
RETURNS TABLE (document_id VARCHAR, content VARCHAR, similarity FLOAT)
AS
$$
    SELECT
        document_id,
        content,
        VECTOR_COSINE_SIMILARITY(
            embedding,
            SNOWFLAKE.CORTEX.EMBED_TEXT(query_text)
        ) AS similarity
    FROM ai.document_embeddings
    ORDER BY similarity DESC
    LIMIT top_n
$$;

-- Usage
SELECT * FROM TABLE(ai.semantic_search('How to configure data replication?', 5));

5. Cost Management
5.1 Monitor Cortex Usage
-- Track Cortex function usage
SELECT
    DATE_TRUNC('day', start_time) AS usage_date,
    query_text,
    -- Identify Cortex function calls
    CASE
        WHEN query_text ILIKE '%CORTEX.COMPLETE%' THEN 'COMPLETE'
        WHEN query_text ILIKE '%CORTEX.SUMMARIZE%' THEN 'SUMMARIZE'
        WHEN query_text ILIKE '%CORTEX.SENTIMENT%' THEN 'SENTIMENT'
        WHEN query_text ILIKE '%CORTEX.TRANSLATE%' THEN 'TRANSLATE'
        WHEN query_text ILIKE '%CORTEX.CLASSIFY%' THEN 'CLASSIFY'
        ELSE 'OTHER'
    END AS cortex_function,
    COUNT(*) AS call_count
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_text ILIKE '%CORTEX%'
  AND start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
GROUP BY 1, 2, 3
ORDER BY usage_date DESC, call_count DESC;

-- Estimate costs (check current pricing)
SELECT
    usage_date,
    cortex_function,
    call_count,
    -- Estimated tokens (rough approximation)
    SUM(estimated_tokens) AS total_tokens
FROM cortex_usage_tracking
GROUP BY usage_date, cortex_function;

5.2 Optimize Cortex Costs
-- 1. Use smaller models for simple tasks
-- mistral-7b instead of mistral-large for classification
SELECT SNOWFLAKE.CORTEX.COMPLETE('mistral-7b', prompt);  -- Cheaper
SELECT SNOWFLAKE.CORTEX.COMPLETE('mistral-large', prompt);  -- More capable

-- 2. Cache results for repeated queries
CREATE TABLE ai.cortex_cache (
    input_hash VARCHAR PRIMARY KEY,
    input_text VARCHAR,
    function_name VARCHAR,
    result VARIANT,
    cached_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
);

-- 3. Batch processing during off-peak
CREATE TASK ai.batch_sentiment_analysis
    WAREHOUSE = ai_wh
    SCHEDULE = 'USING CRON 0 2 * * * UTC'  -- 2 AM
AS
UPDATE reviews
SET sentiment_score = SNOWFLAKE.CORTEX.SENTIMENT(review_text)
WHERE sentiment_score IS NULL
LIMIT 10000;  -- Process in batches

-- 4. Truncate long texts before processing
SELECT SNOWFLAKE.CORTEX.SUMMARIZE(
    SUBSTRING(very_long_text, 1, 10000)  -- Limit input size
);

6. Best Practices
6.1 Cortex Usage GuidelinesPracticeDescriptionRight-size modelsUse smaller models for simple tasksBatch processingProcess during off-peak hoursCache resultsStore results for repeated queriesLimit input sizeTruncate very long textsMonitor usageTrack costs and optimizeValidate outputsDon't blindly trust LLM responses
6.2 Prompt Engineering
-- Good prompt structure
SELECT SNOWFLAKE.CORTEX.COMPLETE(
    'mistral-large',
    '
    Task: Classify the following customer feedback.

    Categories: [product_quality, shipping, customer_service, pricing, other]

    Rules:
    - Choose exactly one category
    - If unclear, choose "other"
    - Respond with only the category name

    Feedback: "The delivery took 2 weeks longer than expected"

    Category:
    '
);

-- Use system prompts for consistency
SELECT SNOWFLAKE.CORTEX.COMPLETE(
    'mistral-large',
    [
        {
            'role': 'system',
            'content': 'You are a data extraction assistant. Always respond in valid JSON format. Never include explanations.'
        },
        {
            'role': 'user',
            'content': 'Extract: name, email, phone from: "Contact John Smith at john@email.com or 555-1234"'
        }
    ]
);

Document ControlVersionDateAuthorChanges1.02025-01-29Data Science TeamInitial document
This document is maintained by the Data Science Team.




