Snowflake Machine Learning Integration Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Science Team
1. Executive Summary
Snowflake provides comprehensive machine learning capabilities through Snowpark ML, built-in ML functions, and integrations with external ML platforms. This guide covers feature engineering, model training, deployment, and MLOps practices within Snowflake.
2. ML Architecture in Snowflake
┌───┐
│ SNOWFLAKE ML ARCHITECTURE │
├───┤
│ │
│ ┌───┐ │
│ │ DATA LAYER │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Raw Data │ │ Feature Store │ │ Training Data │ │ │
│ │ │ (Tables) │ │ (Dynamic Tbls) │ │ (Versioned) │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ ML PROCESSING │ │
│ │ │ │
│ │ ┌───────────────────────┐ ┌───────────────────────┐ │ │
│ │ │ Snowpark ML │ │ Snowflake Cortex │ │ │
│ │ │ │ │ (Built-in ML) │ │ │
│ │ │ • Feature Eng. │ │ │ │ │
│ │ │ • Model Training │ │ • ML Functions │ │ │
│ │ │ • Sklearn/XGBoost │ │ • Forecasting │ │ │
│ │ │ • Model Registry │ │ • Anomaly Detection │ │ │
│ │ └───────────────────────┘ │ • Classification │ │ │
│ │ │ • Sentiment Analysis │ │ │
│ │ └───────────────────────┘ │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ MODEL DEPLOYMENT │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ UDFs/UDTFs │ │ Stored Procs │ │ Streamlit Apps │ │ │
│ │ │ (Inference) │ │ (Batch Score) │ │ (Interactive) │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │
│ INTEGRATIONS: │
│ • External: SageMaker, Vertex AI, Azure ML, Databricks │
│ • Libraries: Scikit-learn, XGBoost, LightGBM, PyTorch │
│ │
└───┘

3. Snowflake Cortex ML Functions
3.1 Built-in ML Functions
-- Time Series Forecasting
-- Predict future values based on historical data
SELECT
 store_id,
 date,
 actual_sales,
 SNOWFLAKE.ML.FORECAST(
 actual_sales,
 date,
 30 -- Forecast 30 days
) OVER (PARTITION BY store_id ORDER BY date) AS forecasted_sales
FROM sales_history
WHERE date <= CURRENT_DATE();

-- Anomaly Detection
SELECT
 transaction_id,
 amount,
 transaction_date,
 SNOWFLAKE.ML.ANOMALY_DETECTION(amount)
 OVER (PARTITION BY customer_id ORDER BY transaction_date
 ROWS BETWEEN 100 PRECEDING AND CURRENT ROW) AS anomaly_score
FROM transactions
WHERE anomaly_score > 0.95; -- High anomaly threshold

-- Classification (Cortex)
SELECT
 customer_id,
 SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
 customer_feedback,
 ['positive', 'negative', 'neutral']
):label::VARCHAR AS sentiment
FROM customer_feedback;

-- Sentiment Analysis
SELECT
 review_id,
 review_text,
 SNOWFLAKE.CORTEX.SENTIMENT(review_text) AS sentiment_score
FROM product_reviews;

-- Text Summarization
SELECT
 document_id,
 SNOWFLAKE.CORTEX.SUMMARIZE(document_text) AS summary
FROM documents;

-- Text Completion
SELECT
 SNOWFLAKE.CORTEX.COMPLETE(
 'mistral-large',
 'Explain the benefits of cloud data warehousing:'
) AS response;

3.2 ML-Powered Analytics
-- Contribution Analysis (identify key drivers)
SELECT *
FROM TABLE(
 SNOWFLAKE.ML.CONTRIBUTION_EXPLORER(
 'SELECT region, product_category, customer_segment,
 SUM(revenue) as total_revenue
 FROM sales
 GROUP BY 1, 2, 3'
)
)
ORDER BY contribution_score DESC;

-- Top Insights
SELECT *
FROM TABLE(
 SNOWFLAKE.ML.TOP_INSIGHTS(
 'sales',
 'revenue',
 ['region', 'product_category', 'customer_segment']
)
);

4. Snowpark ML
4.1 Feature Engineering
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, when, lit, avg, stddev, lag
from snowflake.ml.feature_engineering import FeatureStore
import snowflake.snowpark.functions as F

Get Snowflake session
session = get_active_session()

Load data
df = session.table("analytics.customer_transactions")

Feature engineering with Snowpark
features_df = df.select(
 col("customer_id"),
 col("transaction_date"),
 col("amount"),

 # Aggregations
 F.sum("amount").over(
 Window.partition_by("customer_id")
 .order_by("transaction_date")
 .rows_between(Window.UNBOUNDED_PRECEDING, Window.CURRENT_ROW)
).alias("cumulative_spend"),

 # Rolling calculations
 F.avg("amount").over(
 Window.partition_by("customer_id")
 .order_by("transaction_date")
 .rows_between(6, Window.CURRENT_ROW)
).alias("rolling_7day_avg"),

 # Lag features
 F.lag("amount", 1).over(
 Window.partition_by("customer_id")
 .order_by("transaction_date")
).alias("prev_transaction_amount"),

 # Time-based features
 F.dayofweek("transaction_date").alias("day_of_week"),
 F.month("transaction_date").alias("month"),
 F.hour("transaction_timestamp").alias("hour_of_day"),

 # Categorical encoding
 when(col("channel") == "online", 1).otherwise(0).alias("is_online"),
 when(col("customer_segment") == "premium", 1).otherwise(0).alias("is_premium")
)

Save features
features_df.write.save_as_table("ml.customer_features", mode="overwrite")

4.2 Model Training with Snowpark ML
from snowflake.ml.modeling.preprocessing import StandardScaler, OneHotEncoder
from snowflake.ml.modeling.pipeline import Pipeline
from snowflake.ml.modeling.xgboost import XGBClassifier
from snowflake.ml.modeling.model_selection import GridSearchCV
from snowflake.ml.registry import Registry

Load training data
train_df = session.table("ml.training_data")

Define features and target
feature_cols = [
 "cumulative_spend", "rolling_7day_avg", "transaction_count",
 "days_since_last_purchase", "day_of_week", "is_premium"
]
target_col = "will_churn"

Create preprocessing pipeline
numeric_features = ["cumulative_spend", "rolling_7day_avg", "transaction_count", "days_since_last_purchase"]
categorical_features = ["day_of_week"]

Build pipeline
pipeline = Pipeline(steps=[
 ("scaler", StandardScaler(input_cols=numeric_features, output_cols=numeric_features)),
 ("encoder", OneHotEncoder(input_cols=categorical_features, output_cols="encoded_features")),
 ("classifier", XGBClassifier(
 input_cols=feature_cols,
 label_cols=target_col,
 output_cols="prediction"
))
])

Hyperparameter tuning
param_grid = {
 "classifier__n_estimators": [100, 200],
 "classifier__max_depth": [3, 5, 7],
 "classifier__learning_rate": [0.01, 0.1]
}

grid_search = GridSearchCV(
 estimator=pipeline,
 param_grid=param_grid,
 scoring="roc_auc",
 cv=5
)

Train model
grid_search.fit(train_df)
best_model = grid_search.best_estimator_

Register model in Model Registry
registry = Registry(session=session)
model_version = registry.log_model(
 model=best_model,
 model_name="churn_prediction_model",
 version_name="v1",
 metrics={"roc_auc": grid_search.best_score_}
)

4.3 Model Deployment
from snowflake.ml.registry import Registry

Deploy model as UDF
registry = Registry(session=session)
model = registry.get_model("churn_prediction_model")
model_version = model.version("v1")

Create prediction UDF
model_version.deploy(
 deployment_name="churn_predictor",
 target_warehouse="ml_wh",
 permanent=True
)

Use the deployed model
session.sql("""
 SELECT
 customer_id,
 churn_predictor(
 cumulative_spend,
 rolling_7day_avg,
 transaction_count,
 days_since_last_purchase,
 day_of_week,
 is_premium
) AS churn_probability
 FROM ml.customer_features
""").show()

5. Feature Store
5.1 Creating Feature Store
from snowflake.ml.feature_store import FeatureStore, FeatureView, Entity

Initialize Feature Store
fs = FeatureStore(session=session, database="ML", schema="FEATURE_STORE")

Define entities
customer_entity = Entity(
 name="customer",
 join_keys=["customer_id"]
)
fs.register_entity(customer_entity)

Create feature view
customer_features = session.table("ml.customer_features")

customer_feature_view = FeatureView(
 name="customer_features_v1",
 entities=[customer_entity],
 feature_df=customer_features,
 refresh_freq="1 hour", # How often to refresh
 description="Customer transaction features for churn prediction"
)

fs.register_feature_view(customer_feature_view)

5.2 Using Feature Store
Retrieve features for training
training_data = fs.retrieve_feature_values(
 spine_df=session.table("ml.customer_labels"), # Labels with customer_id
 features=[
 "customer_features_v1.cumulative_spend",
 "customer_features_v1.rolling_7day_avg",
 "customer_features_v1.transaction_count"
]
)

Retrieve features for inference
inference_data = fs.retrieve_feature_values(
 spine_df=session.table("ml.customers_to_score"),
 features=[
 "customer_features_v1.cumulative_spend",
 "customer_features_v1.rolling_7day_avg",
 "customer_features_v1.transaction_count"
],
 timestamp_col="scoring_date" # Point-in-time correct features
)

6. Model Registry
6.1 Managing Models
from snowflake.ml.registry import Registry

registry = Registry(session=session)

List all models
models = registry.list_models()
for model in models:
 print(f"Model: {model.name}")

Get specific model
model = registry.get_model("churn_prediction_model")

List versions
versions = model.list_versions()
for version in versions:
 print(f"Version: {version.version_name}, Metrics: {version.metrics}")

Add tags/metadata
model.set_tag("team", "data_science")
model.set_tag("use_case", "churn_prediction")

Delete old version
model.delete_version("v0_deprecated")

6.2 Model Versioning and Promotion
Promote model to production
model_version = model.version("v2")
model_version.set_alias("production")

In SQL, use alias for predictions
session.sql("""
 SELECT
 customer_id,
 churn_prediction_model!production:predict(features) AS prediction
 FROM scoring_data
""")

Rollback to previous version
previous_version = model.version("v1")
previous_version.set_alias("production")

7. External ML Integration
7.1 AWS SageMaker Integration
-- Create external function pointing to SageMaker endpoint
CREATE OR REPLACE EXTERNAL FUNCTION sagemaker_predict(input_data VARIANT)
 RETURNS VARIANT
 API_INTEGRATION = aws_api_integration
 AS 'https://runtime.sagemaker.us-east-1.amazonaws.com/endpoints/my-endpoint/invocations';

-- Use in queries
SELECT
 customer_id,
 sagemaker_predict(
 OBJECT_CONSTRUCT(
 'features', ARRAY_CONSTRUCT(feature1, feature2, feature3)
)
):prediction AS ml_prediction
FROM customer_data;

7.2 Azure ML Integration
-- External function for Azure ML
CREATE OR REPLACE EXTERNAL FUNCTION azure_ml_score(input_data VARIANT)
 RETURNS VARIANT
 API_INTEGRATION = azure_api_integration
 AS 'https://my-workspace.azureml.net/score';

-- Batch scoring
SELECT
 id,
 azure_ml_score(
 OBJECT_CONSTRUCT('data', ARRAY_CONSTRUCT(col1, col2, col3))
):result AS score
FROM input_table;

8. MLOps Practices
8.1 Automated Retraining Pipeline
-- Create stored procedure for model retraining
CREATE OR REPLACE PROCEDURE ml.retrain_churn_model()
RETURNS VARCHAR
LANGUAGE PYTHON
RUNTIME_VERSION = '3.10'
PACKAGES = ('snowflake-ml-python', 'xgboost')
HANDLER = 'main'
AS
$$
def main(session):
 from snowflake.ml.modeling.xgboost import XGBClassifier
 from snowflake.ml.registry import Registry

 # Load fresh training data
 train_df = session.table("ml.training_data_current")

 # Train new model
 model = XGBClassifier(
 input_cols=["feature1", "feature2", "feature3"],
 label_cols="target",
 output_cols="prediction"
)
 model.fit(train_df)

 # Evaluate
 eval_df = session.table("ml.evaluation_data")
 predictions = model.predict(eval_df)
 # Calculate metrics...

 # Register new version
 registry = Registry(session=session)
 registry.log_model(
 model=model,
 model_name="churn_model",
 version_name=f"v{datetime.now().strftime('%Y%m%d')}",
 metrics={"auc": auc_score}
)

 return f"Model retrained. AUC: {auc_score}"
$$;

-- Schedule retraining
CREATE TASK ml.weekly_model_retrain
 WAREHOUSE = ml_wh
 SCHEDULE = 'USING CRON 0 2 * * 0 UTC' -- Sunday 2 AM
AS
CALL ml.retrain_churn_model();

ALTER TASK ml.weekly_model_retrain RESUME;

8.2 Model Monitoring
-- Track prediction distribution over time
CREATE TABLE ml.prediction_monitoring (
 monitoring_date DATE,
 model_version VARCHAR,
 avg_prediction FLOAT,
 std_prediction FLOAT,
 prediction_count NUMBER
);

-- Monitoring task
CREATE TASK ml.monitor_predictions
 WAREHOUSE = ml_wh
 SCHEDULE = 'USING CRON 0 6 * * * UTC'
AS
INSERT INTO ml.prediction_monitoring
SELECT
 CURRENT_DATE(),
 'v1',
 AVG(prediction),
 STDDEV(prediction),
 COUNT(*)
FROM ml.daily_predictions
WHERE prediction_date = CURRENT_DATE() - 1;

-- Alert on drift
CREATE ALERT ml.prediction_drift_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '1 DAY'
 IF (EXISTS (
 SELECT 1
 FROM ml.prediction_monitoring
 WHERE monitoring_date = CURRENT_DATE() - 1
 AND ABS(avg_prediction -
 (SELECT avg_prediction FROM ml.prediction_monitoring
 WHERE monitoring_date = CURRENT_DATE() - 8)) > 0.1
))
 THEN
 CALL send_alert('Prediction drift detected');

9. Best Practices
9.1 ML Development GuidelinesPracticeDescriptionFeature StoreCentralize feature definitionsModel RegistryVersion and track all modelsPoint-in-time featuresPrevent data leakageAutomated retrainingSchedule regular model updatesMonitoringTrack prediction distributionsA/B testingCompare model versions
9.2 Performance Optimization
1. Use vectorized UDFs for batch inference
@udf(...)
def batch_predict(features: list) -> list:
 # Process batch
 return predictions

2. Partition large inference jobs
session.sql("""
 SELECT /*+ PARALLEL */ customer_id, predict(features)
 FROM large_table
""")

3. Cache feature computations
Use Dynamic Tables with appropriate lag

4. Right-size warehouse for ML workloads
XL or larger for training
Medium for inference

Document ControlVersionDateAuthorChanges1.02025-01-29Data Science TeamInitial document
This document is maintained by the Data Science Team.

