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1. Executive Summary
Snowflake provides comprehensive machine learning capabilities through Snowpark ML, built-in ML functions, and integrations with external ML platforms. This guide covers feature engineering, model training, deployment, and MLOps practices within Snowflake.
2. ML Architecture in Snowflake
┌─────────────────────────────────────────────────────────────────────────────┐
│                    SNOWFLAKE ML ARCHITECTURE                                 │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                    DATA LAYER                                        │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  Raw Data       │  │  Feature Store  │  │  Training Data  │     │    │
│  │  │  (Tables)       │  │  (Dynamic Tbls) │  │  (Versioned)    │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                    ML PROCESSING                                     │    │
│  │                                                                      │    │
│  │  ┌───────────────────────┐    ┌───────────────────────┐            │    │
│  │  │    Snowpark ML        │    │    Snowflake Cortex   │            │    │
│  │  │                       │    │    (Built-in ML)      │            │    │
│  │  │  • Feature Eng.       │    │                       │            │    │
│  │  │  • Model Training     │    │  • ML Functions       │            │    │
│  │  │  • Sklearn/XGBoost    │    │  • Forecasting        │            │    │
│  │  │  • Model Registry     │    │  • Anomaly Detection  │            │    │
│  │  └───────────────────────┘    │  • Classification     │            │    │
│  │                               │  • Sentiment Analysis │            │    │
│  │                               └───────────────────────┘            │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                    MODEL DEPLOYMENT                                  │    │
│  │                                                                      │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  UDFs/UDTFs     │  │  Stored Procs   │  │  Streamlit Apps │     │    │
│  │  │  (Inference)    │  │  (Batch Score)  │  │  (Interactive)  │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
│  INTEGRATIONS:                                                              │
│  • External: SageMaker, Vertex AI, Azure ML, Databricks                    │
│  • Libraries: Scikit-learn, XGBoost, LightGBM, PyTorch                     │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

3. Snowflake Cortex ML Functions
3.1 Built-in ML Functions
-- Time Series Forecasting
-- Predict future values based on historical data
SELECT
    store_id,
    date,
    actual_sales,
    SNOWFLAKE.ML.FORECAST(
        actual_sales,
        date,
        30  -- Forecast 30 days
    ) OVER (PARTITION BY store_id ORDER BY date) AS forecasted_sales
FROM sales_history
WHERE date <= CURRENT_DATE();

-- Anomaly Detection
SELECT
    transaction_id,
    amount,
    transaction_date,
    SNOWFLAKE.ML.ANOMALY_DETECTION(amount)
        OVER (PARTITION BY customer_id ORDER BY transaction_date
              ROWS BETWEEN 100 PRECEDING AND CURRENT ROW) AS anomaly_score
FROM transactions
WHERE anomaly_score > 0.95;  -- High anomaly threshold

-- Classification (Cortex)
SELECT
    customer_id,
    SNOWFLAKE.CORTEX.CLASSIFY_TEXT(
        customer_feedback,
        ['positive', 'negative', 'neutral']
    ):label::VARCHAR AS sentiment
FROM customer_feedback;

-- Sentiment Analysis
SELECT
    review_id,
    review_text,
    SNOWFLAKE.CORTEX.SENTIMENT(review_text) AS sentiment_score
FROM product_reviews;

-- Text Summarization
SELECT
    document_id,
    SNOWFLAKE.CORTEX.SUMMARIZE(document_text) AS summary
FROM documents;

-- Text Completion
SELECT
    SNOWFLAKE.CORTEX.COMPLETE(
        'mistral-large',
        'Explain the benefits of cloud data warehousing:'
    ) AS response;

3.2 ML-Powered Analytics
-- Contribution Analysis (identify key drivers)
SELECT *
FROM TABLE(
    SNOWFLAKE.ML.CONTRIBUTION_EXPLORER(
        'SELECT region, product_category, customer_segment,
                SUM(revenue) as total_revenue
         FROM sales
         GROUP BY 1, 2, 3'
    )
)
ORDER BY contribution_score DESC;

-- Top Insights
SELECT *
FROM TABLE(
    SNOWFLAKE.ML.TOP_INSIGHTS(
        'sales',
        'revenue',
        ['region', 'product_category', 'customer_segment']
    )
);

4. Snowpark ML
4.1 Feature Engineering
from snowflake.snowpark import Session
from snowflake.snowpark.functions import col, when, lit, avg, stddev, lag
from snowflake.ml.feature_engineering import FeatureStore
import snowflake.snowpark.functions as F

# Get Snowflake session
session = get_active_session()

# Load data
df = session.table("analytics.customer_transactions")

# Feature engineering with Snowpark
features_df = df.select(
    col("customer_id"),
    col("transaction_date"),
    col("amount"),

    # Aggregations
    F.sum("amount").over(
        Window.partition_by("customer_id")
        .order_by("transaction_date")
        .rows_between(Window.UNBOUNDED_PRECEDING, Window.CURRENT_ROW)
    ).alias("cumulative_spend"),

    # Rolling calculations
    F.avg("amount").over(
        Window.partition_by("customer_id")
        .order_by("transaction_date")
        .rows_between(6, Window.CURRENT_ROW)
    ).alias("rolling_7day_avg"),

    # Lag features
    F.lag("amount", 1).over(
        Window.partition_by("customer_id")
        .order_by("transaction_date")
    ).alias("prev_transaction_amount"),

    # Time-based features
    F.dayofweek("transaction_date").alias("day_of_week"),
    F.month("transaction_date").alias("month"),
    F.hour("transaction_timestamp").alias("hour_of_day"),

    # Categorical encoding
    when(col("channel") == "online", 1).otherwise(0).alias("is_online"),
    when(col("customer_segment") == "premium", 1).otherwise(0).alias("is_premium")
)

# Save features
features_df.write.save_as_table("ml.customer_features", mode="overwrite")

4.2 Model Training with Snowpark ML
from snowflake.ml.modeling.preprocessing import StandardScaler, OneHotEncoder
from snowflake.ml.modeling.pipeline import Pipeline
from snowflake.ml.modeling.xgboost import XGBClassifier
from snowflake.ml.modeling.model_selection import GridSearchCV
from snowflake.ml.registry import Registry

# Load training data
train_df = session.table("ml.training_data")

# Define features and target
feature_cols = [
    "cumulative_spend", "rolling_7day_avg", "transaction_count",
    "days_since_last_purchase", "day_of_week", "is_premium"
]
target_col = "will_churn"

# Create preprocessing pipeline
numeric_features = ["cumulative_spend", "rolling_7day_avg", "transaction_count", "days_since_last_purchase"]
categorical_features = ["day_of_week"]

# Build pipeline
pipeline = Pipeline(steps=[
    ("scaler", StandardScaler(input_cols=numeric_features, output_cols=numeric_features)),
    ("encoder", OneHotEncoder(input_cols=categorical_features, output_cols="encoded_features")),
    ("classifier", XGBClassifier(
        input_cols=feature_cols,
        label_cols=target_col,
        output_cols="prediction"
    ))
])

# Hyperparameter tuning
param_grid = {
    "classifier__n_estimators": [100, 200],
    "classifier__max_depth": [3, 5, 7],
    "classifier__learning_rate": [0.01, 0.1]
}

grid_search = GridSearchCV(
    estimator=pipeline,
    param_grid=param_grid,
    scoring="roc_auc",
    cv=5
)

# Train model
grid_search.fit(train_df)
best_model = grid_search.best_estimator_

# Register model in Model Registry
registry = Registry(session=session)
model_version = registry.log_model(
    model=best_model,
    model_name="churn_prediction_model",
    version_name="v1",
    metrics={"roc_auc": grid_search.best_score_}
)

4.3 Model Deployment
from snowflake.ml.registry import Registry

# Deploy model as UDF
registry = Registry(session=session)
model = registry.get_model("churn_prediction_model")
model_version = model.version("v1")

# Create prediction UDF
model_version.deploy(
    deployment_name="churn_predictor",
    target_warehouse="ml_wh",
    permanent=True
)

# Use the deployed model
session.sql("""
    SELECT
        customer_id,
        churn_predictor(
            cumulative_spend,
            rolling_7day_avg,
            transaction_count,
            days_since_last_purchase,
            day_of_week,
            is_premium
        ) AS churn_probability
    FROM ml.customer_features
""").show()

5. Feature Store
5.1 Creating Feature Store
from snowflake.ml.feature_store import FeatureStore, FeatureView, Entity

# Initialize Feature Store
fs = FeatureStore(session=session, database="ML", schema="FEATURE_STORE")

# Define entities
customer_entity = Entity(
    name="customer",
    join_keys=["customer_id"]
)
fs.register_entity(customer_entity)

# Create feature view
customer_features = session.table("ml.customer_features")

customer_feature_view = FeatureView(
    name="customer_features_v1",
    entities=[customer_entity],
    feature_df=customer_features,
    refresh_freq="1 hour",  # How often to refresh
    description="Customer transaction features for churn prediction"
)

fs.register_feature_view(customer_feature_view)

5.2 Using Feature Store
# Retrieve features for training
training_data = fs.retrieve_feature_values(
    spine_df=session.table("ml.customer_labels"),  # Labels with customer_id
    features=[
        "customer_features_v1.cumulative_spend",
        "customer_features_v1.rolling_7day_avg",
        "customer_features_v1.transaction_count"
    ]
)

# Retrieve features for inference
inference_data = fs.retrieve_feature_values(
    spine_df=session.table("ml.customers_to_score"),
    features=[
        "customer_features_v1.cumulative_spend",
        "customer_features_v1.rolling_7day_avg",
        "customer_features_v1.transaction_count"
    ],
    timestamp_col="scoring_date"  # Point-in-time correct features
)

6. Model Registry
6.1 Managing Models
from snowflake.ml.registry import Registry

registry = Registry(session=session)

# List all models
models = registry.list_models()
for model in models:
    print(f"Model: {model.name}")

# Get specific model
model = registry.get_model("churn_prediction_model")

# List versions
versions = model.list_versions()
for version in versions:
    print(f"Version: {version.version_name}, Metrics: {version.metrics}")

# Add tags/metadata
model.set_tag("team", "data_science")
model.set_tag("use_case", "churn_prediction")

# Delete old version
model.delete_version("v0_deprecated")

6.2 Model Versioning and Promotion
# Promote model to production
model_version = model.version("v2")
model_version.set_alias("production")

# In SQL, use alias for predictions
session.sql("""
    SELECT
        customer_id,
        churn_prediction_model!production:predict(features) AS prediction
    FROM scoring_data
""")

# Rollback to previous version
previous_version = model.version("v1")
previous_version.set_alias("production")

7. External ML Integration
7.1 AWS SageMaker Integration
-- Create external function pointing to SageMaker endpoint
CREATE OR REPLACE EXTERNAL FUNCTION sagemaker_predict(input_data VARIANT)
    RETURNS VARIANT
    API_INTEGRATION = aws_api_integration
    AS 'https://runtime.sagemaker.us-east-1.amazonaws.com/endpoints/my-endpoint/invocations';

-- Use in queries
SELECT
    customer_id,
    sagemaker_predict(
        OBJECT_CONSTRUCT(
            'features', ARRAY_CONSTRUCT(feature1, feature2, feature3)
        )
    ):prediction AS ml_prediction
FROM customer_data;

7.2 Azure ML Integration
-- External function for Azure ML
CREATE OR REPLACE EXTERNAL FUNCTION azure_ml_score(input_data VARIANT)
    RETURNS VARIANT
    API_INTEGRATION = azure_api_integration
    AS 'https://my-workspace.azureml.net/score';

-- Batch scoring
SELECT
    id,
    azure_ml_score(
        OBJECT_CONSTRUCT('data', ARRAY_CONSTRUCT(col1, col2, col3))
    ):result AS score
FROM input_table;

8. MLOps Practices
8.1 Automated Retraining Pipeline
-- Create stored procedure for model retraining
CREATE OR REPLACE PROCEDURE ml.retrain_churn_model()
RETURNS VARCHAR
LANGUAGE PYTHON
RUNTIME_VERSION = '3.10'
PACKAGES = ('snowflake-ml-python', 'xgboost')
HANDLER = 'main'
AS
$$
def main(session):
    from snowflake.ml.modeling.xgboost import XGBClassifier
    from snowflake.ml.registry import Registry

    # Load fresh training data
    train_df = session.table("ml.training_data_current")

    # Train new model
    model = XGBClassifier(
        input_cols=["feature1", "feature2", "feature3"],
        label_cols="target",
        output_cols="prediction"
    )
    model.fit(train_df)

    # Evaluate
    eval_df = session.table("ml.evaluation_data")
    predictions = model.predict(eval_df)
    # Calculate metrics...

    # Register new version
    registry = Registry(session=session)
    registry.log_model(
        model=model,
        model_name="churn_model",
        version_name=f"v{datetime.now().strftime('%Y%m%d')}",
        metrics={"auc": auc_score}
    )

    return f"Model retrained. AUC: {auc_score}"
$$;

-- Schedule retraining
CREATE TASK ml.weekly_model_retrain
    WAREHOUSE = ml_wh
    SCHEDULE = 'USING CRON 0 2 * * 0 UTC'  -- Sunday 2 AM
AS
CALL ml.retrain_churn_model();

ALTER TASK ml.weekly_model_retrain RESUME;

8.2 Model Monitoring
-- Track prediction distribution over time
CREATE TABLE ml.prediction_monitoring (
    monitoring_date DATE,
    model_version VARCHAR,
    avg_prediction FLOAT,
    std_prediction FLOAT,
    prediction_count NUMBER
);

-- Monitoring task
CREATE TASK ml.monitor_predictions
    WAREHOUSE = ml_wh
    SCHEDULE = 'USING CRON 0 6 * * * UTC'
AS
INSERT INTO ml.prediction_monitoring
SELECT
    CURRENT_DATE(),
    'v1',
    AVG(prediction),
    STDDEV(prediction),
    COUNT(*)
FROM ml.daily_predictions
WHERE prediction_date = CURRENT_DATE() - 1;

-- Alert on drift
CREATE ALERT ml.prediction_drift_alert
    WAREHOUSE = alert_wh
    SCHEDULE = '1 DAY'
    IF (EXISTS (
        SELECT 1
        FROM ml.prediction_monitoring
        WHERE monitoring_date = CURRENT_DATE() - 1
          AND ABS(avg_prediction -
              (SELECT avg_prediction FROM ml.prediction_monitoring
               WHERE monitoring_date = CURRENT_DATE() - 8)) > 0.1
    ))
    THEN
        CALL send_alert('Prediction drift detected');

9. Best Practices
9.1 ML Development GuidelinesPracticeDescriptionFeature StoreCentralize feature definitionsModel RegistryVersion and track all modelsPoint-in-time featuresPrevent data leakageAutomated retrainingSchedule regular model updatesMonitoringTrack prediction distributionsA/B testingCompare model versions
9.2 Performance Optimization
# 1. Use vectorized UDFs for batch inference
@udf(...)
def batch_predict(features: list) -> list:
    # Process batch
    return predictions

# 2. Partition large inference jobs
session.sql("""
    SELECT /*+ PARALLEL */ customer_id, predict(features)
    FROM large_table
""")

# 3. Cache feature computations
# Use Dynamic Tables with appropriate lag

# 4. Right-size warehouse for ML workloads
# XL or larger for training
# Medium for inference
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