Snowflake Authentication & Identity Management Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerSecurity Team
1. Executive Summary
Snowflake supports multiple authentication methods including password-based, MFA, SSO (SAML/OAuth), and key-pair authentication. This guide covers configuring authentication methods, integrating with identity providers, and implementing authentication best practices.
2. Authentication Architecture
┌───┐
│ SNOWFLAKE AUTHENTICATION │
├───┤
│ │
│ AUTHENTICATION METHODS │
│ │
│ ┌───┐ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Username/ │ │ SSO (SAML 2.0) │ │ OAuth 2.0 │ │ │
│ │ │ Password │ │ │ │ │ │ │
│ │ │ │ │ • Okta │ │ • External │ │ │
│ │ │ • Basic auth │ │ • Azure AD │ │ OAuth │ │ │
│ │ │ • MFA support │ │ • Ping Identity │ │ • Snowflake │ │ │
│ │ │ │ │ • OneLogin │ │ OAuth │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Key Pair │ │ SCIM │ │ MFA │ │ │
│ │ │ Authentication │ │ Provisioning │ │ │ │ │
│ │ │ │ │ │ │ • TOTP (Duo) │ │ │
│ │ │ • RSA keys │ │ • Auto user │ │ • Push notif. │ │ │
│ │ │ • No password │ │ provisioning │ │ • Hardware key │ │ │
│ │ │ • Service accts │ │ • Group sync │ │ (FIDO2) │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ │ │ │
│ └───┘ │
│ │
│ AUTHENTICATION FLOW: │
│ User Request ──► Identity Provider ──► Snowflake ──► Access Granted │
│ (SSO/MFA) (Verify) │
│ │
└───┘

3. Password Authentication
3.1 Password Policies
-- Create password policy
CREATE OR REPLACE PASSWORD POLICY security.strong_password_policy
 PASSWORD_MIN_LENGTH = 14
 PASSWORD_MAX_LENGTH = 256
 PASSWORD_MIN_UPPER_CASE_CHARS = 1
 PASSWORD_MIN_LOWER_CASE_CHARS = 1
 PASSWORD_MIN_NUMERIC_CHARS = 1
 PASSWORD_MIN_SPECIAL_CHARS = 1
 PASSWORD_MIN_AGE_DAYS = 1
 PASSWORD_MAX_AGE_DAYS = 90
 PASSWORD_MAX_RETRIES = 5
 PASSWORD_LOCKOUT_TIME_MINS = 30
 PASSWORD_HISTORY = 12
 COMMENT = 'Strong password policy for all users';

-- Apply password policy to account
ALTER ACCOUNT SET PASSWORD_POLICY = security.strong_password_policy;

-- Apply password policy to specific user
ALTER USER john_doe SET PASSWORD_POLICY = security.strong_password_policy;

-- View password policies
SHOW PASSWORD POLICIES;
DESCRIBE PASSWORD POLICY security.strong_password_policy;

3.2 User Management
-- Create user with password
CREATE USER john_doe
 PASSWORD = 'InitialP@ssw0rd!'
 MUST_CHANGE_PASSWORD = TRUE
 DEFAULT_ROLE = analyst_role
 DEFAULT_WAREHOUSE = analytics_wh
 DEFAULT_NAMESPACE = analytics_db.public
 DISPLAY_NAME = 'John Doe'
 EMAIL = 'john.doe@company.com'
 COMMENT = 'Analytics team member';

-- Force password reset
ALTER USER john_doe SET MUST_CHANGE_PASSWORD = TRUE;

-- Disable user
ALTER USER john_doe SET DISABLED = TRUE;

-- Enable user
ALTER USER john_doe SET DISABLED = FALSE;

-- Reset failed login counter
ALTER USER john_doe SET MINS_TO_UNLOCK = 0;

-- View user details
DESCRIBE USER john_doe;
SHOW USERS LIKE 'john%';

4. Multi-Factor Authentication (MFA)
4.1 MFA Configuration
-- Enable MFA for user (user self-enrolls via Snowsight)
-- Snowflake uses Duo Security for MFA

-- Enforce MFA for all users (account level)
ALTER ACCOUNT SET REQUIRE_STORAGE_INTEGRATION_FOR_STAGE_CREATION = TRUE;

-- Check MFA status for users
SELECT
 name,
 login_name,
 display_name,
 email,
 ext_authn_duo,
 ext_authn_uid,
 has_mfa
FROM SNOWFLAKE.ACCOUNT_USAGE.USERS
WHERE deleted_on IS NULL
ORDER BY name;

-- Users without MFA
SELECT name, email
FROM SNOWFLAKE.ACCOUNT_USAGE.USERS
WHERE deleted_on IS NULL
 AND has_mfa = FALSE
 AND name NOT LIKE '%_SERVICE%'; -- Exclude service accounts

4.2 MFA Bypass (Emergency)
-- Temporary MFA bypass (use with caution)
-- This requires ACCOUNTADMIN role

-- Disable MFA temporarily for user
ALTER USER john_doe SET DISABLE_MFA = TRUE;

-- Re-enable MFA
ALTER USER john_doe SET DISABLE_MFA = FALSE;

-- Reset MFA enrollment
-- User must re-enroll through Snowsight

5. SSO Integration (SAML 2.0)
5.1 SAML Configuration
-- Create SAML security integration for Azure AD
CREATE OR REPLACE SECURITY INTEGRATION azure_ad_sso
 TYPE = SAML2
 ENABLED = TRUE
 SAML2_ISSUER = 'https://sts.windows.net/<tenant-id>/'
 SAML2_SSO_URL = 'https://login.microsoftonline.com/<tenant-id>/saml2'
 SAML2_PROVIDER = 'CUSTOM'
 SAML2_X509_CERT = '-----BEGIN CERTIFICATE-----
 MIICnzCCAYcCBgF...
 -----END CERTIFICATE-----'
 SAML2_SP_INITIATED_LOGIN_PAGE_LABEL = 'Azure AD SSO'
 SAML2_ENABLE_SP_INITIATED = TRUE
 SAML2_SNOWFLAKE_ACS_URL = 'https://<account>.snowflakecomputing.com/fed/login'
 SAML2_SNOWFLAKE_ISSUER_URL = 'https://<account>.snowflakecomputing.com';

-- Create SAML integration for Okta
CREATE OR REPLACE SECURITY INTEGRATION okta_sso
 TYPE = SAML2
 ENABLED = TRUE
 SAML2_ISSUER = 'http://www.okta.com/<okta-id>'
 SAML2_SSO_URL = 'https://<org>.okta.com/app/<app-id>/sso/saml'
 SAML2_PROVIDER = 'OKTA'
 SAML2_X509_CERT = '-----BEGIN CERTIFICATE-----...'
 SAML2_SP_INITIATED_LOGIN_PAGE_LABEL = 'Okta SSO'
 SAML2_ENABLE_SP_INITIATED = TRUE;

-- View SAML integrations
SHOW SECURITY INTEGRATIONS;
DESCRIBE SECURITY INTEGRATION azure_ad_sso;

-- Get SAML2 metadata for IdP configuration
SELECT SYSTEM$GENERATE_SAML_CSR('azure_ad_sso');

5.2 SSO User Mapping
-- Create user mapped to SSO
CREATE USER john_doe
 LOGIN_NAME = 'john.doe@company.com' -- Must match SAML attribute
 DEFAULT_ROLE = analyst_role
 DEFAULT_WAREHOUSE = analytics_wh;

-- Ensure user login_name matches SAML NameID
ALTER USER john_doe SET LOGIN_NAME = 'john.doe@company.com';

-- SSO-only user (no password)
CREATE USER sso_user
 LOGIN_NAME = 'sso.user@company.com'
 TYPE = PERSON
 DEFAULT_ROLE = analyst_role;
-- Don't set PASSWORD - user can only login via SSO

6. Key Pair Authentication
6.1 Setting Up Key Pair Auth
Generate RSA key pair (on client machine)
openssl genrsa 2048 | openssl pkcs8 -topk8 -inform PEM -out rsa_key.p8 -nocrypt

Extract public key
openssl rsa -in rsa_key.p8 -pubout -out rsa_key.pub

-- Assign public key to user
ALTER USER service_account SET RSA_PUBLIC_KEY = 'MIIBIjANBgkqh...';

-- For key rotation, can set a second key
ALTER USER service_account SET RSA_PUBLIC_KEY_2 = 'MIIBIjANBgkqh...';

-- Remove old key after rotation
ALTER USER service_account UNSET RSA_PUBLIC_KEY;

-- View key fingerprint
DESCRIBE USER service_account;
-- Look for RSA_PUBLIC_KEY_FP and RSA_PUBLIC_KEY_2_FP

6.2 Using Key Pair in Applications
Python connection with key pair
from snowflake.connector import connect
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization

Load private key
with open('rsa_key.p8', 'rb') as key_file:
 private_key = serialization.load_pem_private_key(
 key_file.read(),
 password=None,
 backend=default_backend()
)

Get private key bytes
private_key_bytes = private_key.private_bytes(
 encoding=serialization.Encoding.DER,
 format=serialization.PrivateFormat.PKCS8,
 encryption_algorithm=serialization.NoEncryption()
)

Connect
conn = connect(
 account='<account>',
 user='service_account',
 private_key=private_key_bytes,
 warehouse='etl_wh',
 database='analytics_db'
)

7. OAuth Integration
7.1 External OAuth
-- Create external OAuth integration for Azure AD
CREATE OR REPLACE SECURITY INTEGRATION azure_oauth
 TYPE = EXTERNAL_OAUTH
 ENABLED = TRUE
 EXTERNAL_OAUTH_TYPE = AZURE
 EXTERNAL_OAUTH_ISSUER = 'https://sts.windows.net/<tenant-id>/'
 EXTERNAL_OAUTH_JWS_KEYS_URL = 'https://login.microsoftonline.com/<tenant-id>/discovery/v2.0/keys'
 EXTERNAL_OAUTH_AUDIENCE_LIST = ('https://<account>.snowflakecomputing.com')
 EXTERNAL_OAUTH_TOKEN_USER_MAPPING_CLAIM = 'upn'
 EXTERNAL_OAUTH_SNOWFLAKE_USER_MAPPING_ATTRIBUTE = 'LOGIN_NAME'
 EXTERNAL_OAUTH_ANY_ROLE_MODE = 'ENABLE';

-- Create external OAuth integration for Okta
CREATE OR REPLACE SECURITY INTEGRATION okta_oauth
 TYPE = EXTERNAL_OAUTH
 ENABLED = TRUE
 EXTERNAL_OAUTH_TYPE = OKTA
 EXTERNAL_OAUTH_ISSUER = 'https://<org>.okta.com/oauth2/<auth-server>'
 EXTERNAL_OAUTH_JWS_KEYS_URL = 'https://<org>.okta.com/oauth2/<auth-server>/v1/keys'
 EXTERNAL_OAUTH_TOKEN_USER_MAPPING_CLAIM = 'sub'
 EXTERNAL_OAUTH_SNOWFLAKE_USER_MAPPING_ATTRIBUTE = 'LOGIN_NAME';

7.2 Snowflake OAuth (for BI Tools)
-- Create Snowflake OAuth integration for Tableau
CREATE OR REPLACE SECURITY INTEGRATION tableau_oauth
 TYPE = OAUTH
 ENABLED = TRUE
 OAUTH_CLIENT = TABLEAU_DESKTOP
 OAUTH_REDIRECT_URI = 'http://localhost/Callback';

-- Create OAuth integration for custom application
CREATE OR REPLACE SECURITY INTEGRATION custom_app_oauth
 TYPE = OAUTH
 ENABLED = TRUE
 OAUTH_CLIENT = CUSTOM
 OAUTH_CLIENT_TYPE = 'CONFIDENTIAL'
 OAUTH_REDIRECT_URI = 'https://myapp.com/oauth/callback'
 OAUTH_ISSUE_REFRESH_TOKENS = TRUE
 OAUTH_REFRESH_TOKEN_VALIDITY = 86400; -- 24 hours

-- Get client credentials
SELECT SYSTEM$SHOW_OAUTH_CLIENT_SECRETS('custom_app_oauth');

8. SCIM Provisioning
8.1 SCIM Integration
-- Create SCIM integration for Azure AD
CREATE OR REPLACE SECURITY INTEGRATION azure_scim
 TYPE = SCIM
 SCIM_CLIENT = 'AZURE'
 RUN_AS_ROLE = 'AAD_PROVISIONER';

-- Create SCIM integration for Okta
CREATE OR REPLACE SECURITY INTEGRATION okta_scim
 TYPE = SCIM
 SCIM_CLIENT = 'OKTA'
 RUN_AS_ROLE = 'OKTA_PROVISIONER';

-- Get SCIM endpoint and token
SELECT SYSTEM$GENERATE_SCIM_ACCESS_TOKEN('azure_scim');

-- The output provides:
-- - SCIM endpoint URL
-- - Bearer token for API authentication

8.2 SCIM Role Mapping
-- Create role for SCIM provisioning
CREATE ROLE AAD_PROVISIONER;
GRANT CREATE USER ON ACCOUNT TO ROLE AAD_PROVISIONER;
GRANT CREATE ROLE ON ACCOUNT TO ROLE AAD_PROVISIONER;
GRANT ROLE analyst_role TO ROLE AAD_PROVISIONER WITH GRANT OPTION;
GRANT ROLE developer_role TO ROLE AAD_PROVISIONER WITH GRANT OPTION;

-- Map Azure AD groups to Snowflake roles
-- This is done in Azure AD SCIM configuration
-- Group mapping: Azure AD Group -> Snowflake Role

9. Authentication Monitoring
9.1 Login Audit
-- Login history analysis
SELECT
 event_timestamp,
 user_name,
 client_ip,
 reported_client_type,
 first_authentication_factor,
 second_authentication_factor,
 is_success,
 error_code,
 error_message
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY event_timestamp DESC;

-- Authentication method distribution
SELECT
 first_authentication_factor,
 second_authentication_factor,
 COUNT(*) AS login_count,
 COUNT(DISTINCT user_name) AS unique_users
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'YES'
 AND event_timestamp >= DATEADD('day', -30, CURRENT_TIMESTAMP())
GROUP BY first_authentication_factor, second_authentication_factor
ORDER BY login_count DESC;

-- Users not using MFA
SELECT DISTINCT user_name
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'YES'
 AND second_authentication_factor IS NULL
 AND event_timestamp >= DATEADD('day', -30, CURRENT_TIMESTAMP())
 AND user_name NOT LIKE '%SERVICE%';

10. Best Practices
10.1 Authentication ChecklistPracticeDescriptionEnforce MFARequire for all human usersUse SSOCentralize identity managementKey pair for service accountsNo passwords for automationStrong password policyEnforce complexity and rotationSCIM provisioningAutomate user lifecycleMonitor loginsAlert on suspicious activity
10.2 Service Account Security
-- Service account best practices
CREATE USER etl_service_account
 TYPE = SERVICE
 DEFAULT_ROLE = etl_role
 DEFAULT_WAREHOUSE = etl_wh
 COMMENT = 'ETL pipeline service account';

-- Use key pair only (no password)
ALTER USER etl_service_account SET RSA_PUBLIC_KEY = '...';

-- Restrict network access
ALTER USER etl_service_account SET NETWORK_POLICY = etl_server_policy;

-- No MFA for service accounts (use key pair instead)
ALTER USER etl_service_account SET DISABLE_MFA = TRUE;

Document ControlVersionDateAuthorChanges1.02025-01-29Security TeamInitial document
This document is maintained by the Security Team.

