Snowflake CI/CD Pipeline Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerDevOps Team
1. Executive Summary
CI/CD (Continuous Integration/Continuous Deployment) for Snowflake enables automated testing, validation, and deployment of database changes. This guide covers pipeline setup, change management, and deployment strategies using popular CI/CD tools.
2. CI/CD Architecture
┌───┐
│ SNOWFLAKE CI/CD ARCHITECTURE │
├───┤
│ │
│ SOURCE CONTROL CI/CD PIPELINE SNOWFLAKE │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ │ │ │ │ │ │
│ │ GitHub/ │ Push │ GitHub │ Deploy │ DEV │ │
│ │ GitLab/ │───────►│ Actions/ │──────────►│ Account │ │
│ │ Azure │ │ Azure │ │ │ │
│ │ DevOps │ │ DevOps/ │ └─────────────┘ │
│ │ │ │ Jenkins │ │ │
│ │ ┌───────┐ │ │ │ ┌──────▼──────┐ │
│ │ │ SQL │ │ │ ┌───────┐ │ │ │ │
│ │ │ Files │ │ │ │ Test │ │ Promote │ QA │ │
│ │ ├───────┤ │ │ │ Stage │ │──────────►│ Account │ │
│ │ │ dbt │ │ │ └───────┘ │ │ │ │
│ │ │Models │ │ │ │ │ └─────────────┘ │
│ │ ├───────┤ │ │ ▼ │ │ │
│ │ │Stored │ │ │ ┌───────┐ │ ┌──────▼──────┐ │
│ │ │ Procs │ │ │ │Deploy │ │ Release │ │ │
│ │ └───────┘ │ │ │ Stage │ │──────────►│ PROD │ │
│ │ │ │ └───────┘ │ │ Account │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
│ TOOLS: │
│ • schemachange - SQL migration tool │
│ • dbt - Data transformation tool │
│ • Terraform - Infrastructure as Code │
│ • Snowflake CLI (snow) - Native CLI tool │
│ │
└───┘

3. GitHub Actions Pipeline
3.1 Basic Deployment Pipeline
.github/workflows/snowflake-deploy.yml
name: Snowflake Deployment

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main]

env:
 SNOWFLAKE_ACCOUNT: ${{ secrets.SNOWFLAKE_ACCOUNT }}
 SNOWFLAKE_USER: ${{ secrets.SNOWFLAKE_USER }}
 SNOWFLAKE_PASSWORD: ${{ secrets.SNOWFLAKE_PASSWORD }}
 SNOWFLAKE_ROLE: DEPLOYER_ROLE
 SNOWFLAKE_WAREHOUSE: DEPLOY_WH

jobs:
 validate:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

 - name: Setup Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.10'

 - name: Install dependencies
 run: |
 pip install snowflake-connector-python
 pip install schemachange

 - name: Validate SQL syntax
 run: |
 python scripts/validate_sql.py

 - name: Dry run deployment
 run: |
 schemachange -f migrations -a $SNOWFLAKE_ACCOUNT \
 -u $SNOWFLAKE_USER -r $SNOWFLAKE_ROLE \
 -w $SNOWFLAKE_WAREHOUSE -d ANALYTICS_DB \
 --dry-run

 deploy-dev:
 needs: validate
 if: github.ref == 'refs/heads/develop'
 runs-on: ubuntu-latest
 environment: development
 steps:
 - uses: actions/checkout@v4

 - name: Deploy to DEV
 run: |
 schemachange -f migrations -a $SNOWFLAKE_ACCOUNT \
 -u $SNOWFLAKE_USER -r $SNOWFLAKE_ROLE \
 -w $SNOWFLAKE_WAREHOUSE -d DEV_DB \
 -c SCHEMACHANGE.CHANGE_HISTORY

 deploy-prod:
 needs: validate
 if: github.ref == 'refs/heads/main'
 runs-on: ubuntu-latest
 environment: production
 steps:
 - uses: actions/checkout@v4

 - name: Deploy to PROD
 run: |
 schemachange -f migrations -a $SNOWFLAKE_ACCOUNT \
 -u $SNOWFLAKE_USER -r $SNOWFLAKE_ROLE \
 -w $SNOWFLAKE_WAREHOUSE -d PROD_DB \
 -c SCHEMACHANGE.CHANGE_HISTORY

3.2 dbt Pipeline
.github/workflows/dbt-deploy.yml
name: dbt Deployment

on:
 push:
 branches: [main]
 paths:
 - 'dbt/**'

jobs:
 dbt-run:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4

 - name: Setup Python
 uses: actions/setup-python@v4
 with:
 python-version: '3.10'

 - name: Install dbt
 run: pip install dbt-snowflake

 - name: Setup dbt profile
 run: |
 mkdir -p ~/.dbt
 cat > ~/.dbt/profiles.yml << EOF
 snowflake_project:
 target: prod
 outputs:
 prod:
 type: snowflake
 account: ${{ secrets.SNOWFLAKE_ACCOUNT }}
 user: ${{ secrets.SNOWFLAKE_USER }}
 password: ${{ secrets.SNOWFLAKE_PASSWORD }}
 role: DBT_ROLE
 warehouse: DBT_WH
 database: ANALYTICS_DB
 schema: DBT_SCHEMA
 threads: 4
 EOF

 - name: dbt deps
 run: cd dbt && dbt deps

 - name: dbt run
 run: cd dbt && dbt run --target prod

 - name: dbt test
 run: cd dbt && dbt test --target prod

 - name: Generate docs
 run: cd dbt && dbt docs generate

4. Schemachange Migrations
4.1 Migration File Structure
migrations/
├── V1.0.0__initial_schema.sql
├── V1.0.1__add_customers_table.sql
├── V1.0.2__add_orders_table.sql
├── V1.1.0__add_indexes.sql
├── R__stored_procedures.sql # Repeatable
├── R__views.sql # Repeatable
└── A__always_run_cleanup.sql # Always run

4.2 Migration Scripts
-- V1.0.0__initial_schema.sql
-- Create initial database schema

CREATE SCHEMA IF NOT EXISTS analytics;
CREATE SCHEMA IF NOT EXISTS staging;
CREATE SCHEMA IF NOT EXISTS raw;

-- V1.0.1__add_customers_table.sql
-- Add customers dimension table

CREATE TABLE IF NOT EXISTS analytics.dim_customers (
 customer_id NUMBER PRIMARY KEY,
 customer_name VARCHAR(200),
 email VARCHAR(200),
 region VARCHAR(100),
 created_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP(),
 updated_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
);

-- R__stored_procedures.sql
-- Repeatable migration for stored procedures
-- Runs on every change to this file

CREATE OR REPLACE PROCEDURE analytics.refresh_customer_metrics()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
 TRUNCATE TABLE analytics.customer_metrics;

 INSERT INTO analytics.customer_metrics
 SELECT
 customer_id,
 COUNT(*) AS order_count,
 SUM(amount) AS total_spend
 FROM analytics.fact_orders
 GROUP BY customer_id;

 RETURN 'Refresh completed';
END;
$$;

4.3 Schemachange Configuration
schemachange-config.yml
root-folder: migrations
modules-folder: modules
vars:
 environment: "{{ env_var('ENVIRONMENT') }}"
 database_name: "{{ env_var('DATABASE_NAME') }}"

Example variable usage in SQL:
USE DATABASE {{ database_name }};

5. Terraform Infrastructure
5.1 Snowflake Provider
main.tf
terraform {
 required_providers {
 snowflake = {
 source = "Snowflake-Labs/snowflake"
 version = "~> 0.70"
 }
 }
}

provider "snowflake" {
 account = var.snowflake_account
 username = var.snowflake_username
 password = var.snowflake_password
 role = "SYSADMIN"
}

Variables
variable "snowflake_account" {}
variable "snowflake_username" {}
variable "snowflake_password" {}
variable "environment" {
 default = "dev"
}

5.2 Database and Schema
databases.tf
resource "snowflake_database" "analytics" {
 name = "ANALYTICS_${upper(var.environment)}"
 comment = "Analytics database for ${var.environment}"
 data_retention_time_in_days = var.environment == "prod" ? 90 : 1
}

resource "snowflake_schema" "analytics_public" {
 database = snowflake_database.analytics.name
 name = "PUBLIC"
 is_managed = false
 data_retention_days = var.environment == "prod" ? 90 : 1
}

resource "snowflake_schema" "analytics_staging" {
 database = snowflake_database.analytics.name
 name = "STAGING"
}

5.3 Warehouses and Roles
warehouses.tf
resource "snowflake_warehouse" "etl" {
 name = "ETL_WH_${upper(var.environment)}"
 warehouse_size = var.environment == "prod" ? "MEDIUM" : "XSMALL"
 auto_suspend = 60
 auto_resume = true
 min_cluster_count = 1
 max_cluster_count = var.environment == "prod" ? 3 : 1
 scaling_policy = "STANDARD"
}

roles.tf
resource "snowflake_role" "analyst" {
 name = "ANALYST_${upper(var.environment)}"
 comment = "Analyst role for ${var.environment}"
}

resource "snowflake_role_grants" "analyst_grants" {
 role_name = snowflake_role.analyst.name
 roles = ["SYSADMIN"]
 users = var.analyst_users
}

resource "snowflake_database_grant" "analyst_usage" {
 database_name = snowflake_database.analytics.name
 privilege = "USAGE"
 roles = [snowflake_role.analyst.name]
}

6. Testing Strategies
6.1 SQL Validation
scripts/validate_sql.py
import os
import sys
from pathlib import Path

def validate_sql_files(directory):
 """Basic SQL validation."""
 errors = []

 for sql_file in Path(directory).glob('**/*.sql'):
 with open(sql_file) as f:
 content = f.read()

 # Check for common issues
 if 'DROP TABLE' in content.upper() and 'IF EXISTS' not in content.upper():
 errors.append(f"{sql_file}: DROP TABLE without IF EXISTS")

 if 'TRUNCATE' in content.upper() and 'prod' in str(sql_file).lower():
 errors.append(f"{sql_file}: TRUNCATE in production migration")

 # Add more validation rules

 if errors:
 for error in errors:
 print(f"ERROR: {error}")
 sys.exit(1)

 print("SQL validation passed")

if __name__ == "__main__":
 validate_sql_files("migrations")

6.2 Integration Tests
tests/test_deployment.py
import pytest
from snowflake.connector import connect

@pytest.fixture
def snowflake_connection():
 conn = connect(
 account=os.environ['SNOWFLAKE_ACCOUNT'],
 user=os.environ['SNOWFLAKE_USER'],
 password=os.environ['SNOWFLAKE_PASSWORD'],
 warehouse='TEST_WH',
 database='TEST_DB'
)
 yield conn
 conn.close()

def test_table_exists(snowflake_connection):
 cursor = snowflake_connection.cursor()
 cursor.execute("SHOW TABLES LIKE 'DIM_CUSTOMERS'")
 assert cursor.fetchone() is not None

def test_stored_procedure(snowflake_connection):
 cursor = snowflake_connection.cursor()
 cursor.execute("CALL analytics.refresh_customer_metrics()")
 result = cursor.fetchone()
 assert 'completed' in result[0].lower()

def test_data_quality(snowflake_connection):
 cursor = snowflake_connection.cursor()
 cursor.execute("""
 SELECT COUNT(*) FROM analytics.dim_customers
 WHERE customer_id IS NULL
 """)
 null_count = cursor.fetchone()[0]
 assert null_count == 0, "Found NULL customer_ids"

7. Deployment Patterns
7.1 Blue-Green Deployment
-- Blue-Green deployment pattern
-- Create new version of objects

-- Step 1: Create green schema
CREATE SCHEMA analytics_green CLONE analytics_blue;

-- Step 2: Deploy changes to green
-- Run migrations against analytics_green

-- Step 3: Validate green
-- Run tests against analytics_green

-- Step 4: Swap schemas
ALTER SCHEMA analytics_blue RENAME TO analytics_archive;
ALTER SCHEMA analytics_green RENAME TO analytics_blue;

-- Step 5: Cleanup (after validation period)
DROP SCHEMA analytics_archive;

7.2 Feature Flags
-- Feature flag table
CREATE TABLE config.feature_flags (
 feature_name VARCHAR PRIMARY KEY,
 is_enabled BOOLEAN DEFAULT FALSE,
 enabled_for_users ARRAY,
 enabled_percentage NUMBER(5,2),
 created_at TIMESTAMP_NTZ DEFAULT CURRENT_TIMESTAMP()
);

-- Check feature flag in stored procedure
CREATE OR REPLACE PROCEDURE check_feature(feature VARCHAR)
RETURNS BOOLEAN
AS
$$
DECLARE
 is_enabled BOOLEAN;
BEGIN
 SELECT ff.is_enabled INTO is_enabled
 FROM config.feature_flags ff
 WHERE ff.feature_name = :feature;

 RETURN COALESCE(is_enabled, FALSE);
END;
$$;

-- Usage in code
IF (CALL check_feature('new_algorithm')) THEN
 -- New code path
ELSE
 -- Old code path
END IF;

8. Best Practices
8.1 CI/CD ChecklistPracticeDescriptionVersion controlAll SQL in GitAutomated testingValidate before deployEnvironment parityDev/QA/Prod consistencyRollback planAlways have undo strategyAudit trailTrack all deploymentsSecrets managementNever commit credentials
8.2 Migration Best Practices
-- 1. Always use IF EXISTS / IF NOT EXISTS
CREATE TABLE IF NOT EXISTS new_table (...);
DROP TABLE IF EXISTS old_table;

-- 2. Make migrations idempotent
CREATE OR REPLACE VIEW my_view AS ...;

-- 3. Avoid data loss operations in production
-- Use RENAME instead of DROP
ALTER TABLE old_table RENAME TO old_table_backup;

-- 4. Use transactions where possible
BEGIN TRANSACTION;
-- DDL statements
COMMIT;

-- 5. Include rollback scripts
-- V1.0.1__add_column.sql
ALTER TABLE customers ADD COLUMN new_col VARCHAR;

-- V1.0.1__add_column_rollback.sql (keep separately)
ALTER TABLE customers DROP COLUMN new_col;

Document ControlVersionDateAuthorChanges1.02025-01-29DevOps TeamInitial document
This document is maintained by the DevOps Team.

