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1. Executive Summary
Effective environment management in Snowflake involves setting up isolated development, testing, and production environments with appropriate access controls, data management, and promotion workflows. This guide covers multi-environment strategies and best practices.
2. Environment Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    ENVIRONMENT ARCHITECTURE                                  │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  DEVELOPMENT                                                         │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  DEV_DB         │  │  DEV_WH         │  │  DEV_ROLE       │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Sandboxes    │  │  • XSMALL       │  │  • Full access  │     │    │
│  │  │  • Sample data  │  │  • Per-developer│  │  • Write perms  │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
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│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  QUALITY ASSURANCE                                                   │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  QA_DB          │  │  QA_WH          │  │  QA_ROLE        │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Test data    │  │  • SMALL        │  │  • Read/Write   │     │    │
│  │  │  • Full schema  │  │  • Shared       │  │  • Test perms   │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                               Promotion                                      │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  PRODUCTION                                                          │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  PROD_DB        │  │  PROD_WH        │  │  PROD_ROLE      │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Live data    │  │  • MEDIUM+      │  │  • Read-only    │     │    │
│  │  │  • Full schema  │  │  • Auto-scale   │  │  • Restricted   │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

3. Environment Setup
3.1 Database per Environment
-- Create environment-specific databases
CREATE DATABASE dev_analytics
    DATA_RETENTION_TIME_IN_DAYS = 1
    COMMENT = 'Development analytics database';

CREATE DATABASE qa_analytics
    DATA_RETENTION_TIME_IN_DAYS = 7
    COMMENT = 'QA analytics database';

CREATE DATABASE prod_analytics
    DATA_RETENTION_TIME_IN_DAYS = 90
    COMMENT = 'Production analytics database';

-- Create identical schema structure
CREATE SCHEMA dev_analytics.raw;
CREATE SCHEMA dev_analytics.staging;
CREATE SCHEMA dev_analytics.analytics;

CREATE SCHEMA qa_analytics.raw;
CREATE SCHEMA qa_analytics.staging;
CREATE SCHEMA qa_analytics.analytics;

CREATE SCHEMA prod_analytics.raw;
CREATE SCHEMA prod_analytics.staging;
CREATE SCHEMA prod_analytics.analytics;

3.2 Warehouses per Environment
-- Development warehouses (small, per-developer)
CREATE WAREHOUSE dev_wh_general
    WAREHOUSE_SIZE = 'XSMALL'
    AUTO_SUSPEND = 60
    AUTO_RESUME = TRUE
    COMMENT = 'Shared development warehouse';

-- QA warehouse
CREATE WAREHOUSE qa_wh
    WAREHOUSE_SIZE = 'SMALL'
    AUTO_SUSPEND = 120
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 2
    COMMENT = 'QA testing warehouse';

-- Production warehouses (larger, multi-cluster)
CREATE WAREHOUSE prod_etl_wh
    WAREHOUSE_SIZE = 'MEDIUM'
    AUTO_SUSPEND = 300
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 4
    SCALING_POLICY = 'ECONOMY'
    COMMENT = 'Production ETL warehouse';

CREATE WAREHOUSE prod_analytics_wh
    WAREHOUSE_SIZE = 'LARGE'
    AUTO_SUSPEND = 300
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 6
    SCALING_POLICY = 'STANDARD'
    COMMENT = 'Production analytics warehouse';

3.3 Role Hierarchy
-- Create environment-specific roles
-- Development
CREATE ROLE dev_admin;
CREATE ROLE dev_developer;
CREATE ROLE dev_analyst;

-- QA
CREATE ROLE qa_admin;
CREATE ROLE qa_tester;
CREATE ROLE qa_analyst;

-- Production
CREATE ROLE prod_admin;
CREATE ROLE prod_etl;
CREATE ROLE prod_analyst;
CREATE ROLE prod_viewer;

-- Role hierarchy
GRANT ROLE dev_analyst TO ROLE dev_developer;
GRANT ROLE dev_developer TO ROLE dev_admin;

GRANT ROLE qa_analyst TO ROLE qa_tester;
GRANT ROLE qa_tester TO ROLE qa_admin;

GRANT ROLE prod_viewer TO ROLE prod_analyst;
GRANT ROLE prod_analyst TO ROLE prod_etl;
GRANT ROLE prod_etl TO ROLE prod_admin;

-- Grant environment roles to SYSADMIN
GRANT ROLE dev_admin TO ROLE SYSADMIN;
GRANT ROLE qa_admin TO ROLE SYSADMIN;
GRANT ROLE prod_admin TO ROLE SYSADMIN;

4. Data Management
4.1 Test Data Generation
-- Create synthetic test data for dev/QA
CREATE OR REPLACE PROCEDURE dev_analytics.util.generate_test_data(num_records NUMBER)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Generate customers
    INSERT INTO dev_analytics.raw.customers
    SELECT
        SEQ4() AS customer_id,
        'Customer_' || SEQ4() AS customer_name,
        'customer' || SEQ4() || '@test.com' AS email,
        ARRAY_CONSTRUCT('North', 'South', 'East', 'West')[UNIFORM(0, 3, RANDOM())] AS region
    FROM TABLE(GENERATOR(ROWCOUNT => :num_records));

    -- Generate orders
    INSERT INTO dev_analytics.raw.orders
    SELECT
        SEQ4() AS order_id,
        UNIFORM(1, :num_records, RANDOM()) AS customer_id,
        DATEADD('day', -UNIFORM(0, 365, RANDOM()), CURRENT_DATE()) AS order_date,
        ROUND(UNIFORM(10, 1000, RANDOM()), 2) AS amount
    FROM TABLE(GENERATOR(ROWCOUNT => :num_records * 10));

    RETURN 'Generated ' || :num_records || ' customers and ' || (:num_records * 10) || ' orders';
END;
$$;

-- Generate test data
CALL dev_analytics.util.generate_test_data(1000);

4.2 Data Cloning
-- Clone production data to QA (zero-copy)
CREATE DATABASE qa_analytics_refresh CLONE prod_analytics;

-- Clone specific schema
CREATE SCHEMA qa_analytics.analytics_refresh
    CLONE prod_analytics.analytics;

-- Clone with data masking procedure
CREATE OR REPLACE PROCEDURE qa_analytics.util.refresh_from_prod()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Clone tables
    CREATE OR REPLACE TABLE qa_analytics.raw.customers
        CLONE prod_analytics.raw.customers;

    -- Mask sensitive data
    UPDATE qa_analytics.raw.customers
    SET
        email = CONCAT('masked_', customer_id, '@test.com'),
        phone = '555-000-0000',
        ssn = 'XXX-XX-' || RIGHT(ssn, 4);

    RETURN 'QA data refreshed and masked';
END;
$$;

4.3 Data Subsetting
-- Create subset of production data for dev
CREATE OR REPLACE PROCEDURE dev_analytics.util.create_dev_subset()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Get recent customers only
    CREATE OR REPLACE TABLE dev_analytics.raw.customers AS
    SELECT * FROM prod_analytics.raw.customers
    WHERE created_date >= DATEADD('month', -3, CURRENT_DATE())
    SAMPLE (10000 ROWS);

    -- Get orders for those customers
    CREATE OR REPLACE TABLE dev_analytics.raw.orders AS
    SELECT o.*
    FROM prod_analytics.raw.orders o
    INNER JOIN dev_analytics.raw.customers c
        ON o.customer_id = c.customer_id;

    RETURN 'Dev subset created';
END;
$$;

5. Promotion Workflows
5.1 Code Promotion
-- Promotion procedure: DEV -> QA
CREATE OR REPLACE PROCEDURE admin.promote_to_qa(object_type VARCHAR, object_name VARCHAR)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
    ddl_statement VARCHAR;
BEGIN
    -- Get DDL from dev
    SELECT GET_DDL(:object_type, 'DEV_ANALYTICS.' || :object_name) INTO ddl_statement;

    -- Replace database reference
    ddl_statement := REPLACE(ddl_statement, 'DEV_ANALYTICS', 'QA_ANALYTICS');

    -- Execute in QA
    EXECUTE IMMEDIATE ddl_statement;

    -- Log promotion
    INSERT INTO admin.promotion_log (object_type, object_name, source_env, target_env, promoted_at, promoted_by)
    VALUES (:object_type, :object_name, 'DEV', 'QA', CURRENT_TIMESTAMP(), CURRENT_USER());

    RETURN 'Promoted ' || :object_type || ' ' || :object_name || ' to QA';
END;
$$;

-- Usage
CALL admin.promote_to_qa('VIEW', 'analytics.customer_summary');
CALL admin.promote_to_qa('PROCEDURE', 'analytics.refresh_metrics()');

5.2 Schema Comparison
-- Compare schemas between environments
CREATE OR REPLACE VIEW admin.schema_comparison AS
WITH dev_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'DEV' AS environment
    FROM dev_analytics.information_schema.tables
),
qa_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'QA' AS environment
    FROM qa_analytics.information_schema.tables
),
prod_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'PROD' AS environment
    FROM prod_analytics.information_schema.tables
)
SELECT
    COALESCE(d.schema_name, q.schema_name, p.schema_name) AS schema_name,
    COALESCE(d.object_name, q.object_name, p.object_name) AS object_name,
    COALESCE(d.object_type, q.object_type, p.object_type) AS object_type,
    CASE WHEN d.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_dev,
    CASE WHEN q.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_qa,
    CASE WHEN p.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_prod
FROM dev_objects d
FULL OUTER JOIN qa_objects q
    ON d.schema_name = q.schema_name AND d.object_name = q.object_name
FULL OUTER JOIN prod_objects p
    ON COALESCE(d.schema_name, q.schema_name) = p.schema_name
    AND COALESCE(d.object_name, q.object_name) = p.object_name;

-- Find objects not in production
SELECT * FROM admin.schema_comparison
WHERE in_prod = 'NO' AND (in_dev = 'YES' OR in_qa = 'YES');

6. Access Control
6.1 Environment Grants
-- Development grants (permissive)
GRANT ALL ON DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON ALL SCHEMAS IN DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON ALL TABLES IN DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON FUTURE TABLES IN DATABASE dev_analytics TO ROLE dev_admin;

GRANT USAGE ON WAREHOUSE dev_wh_general TO ROLE dev_developer;
GRANT USAGE ON DATABASE dev_analytics TO ROLE dev_developer;
GRANT CREATE TABLE, CREATE VIEW ON ALL SCHEMAS IN DATABASE dev_analytics TO ROLE dev_developer;

-- QA grants (controlled)
GRANT USAGE ON DATABASE qa_analytics TO ROLE qa_tester;
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN DATABASE qa_analytics TO ROLE qa_tester;
GRANT USAGE ON WAREHOUSE qa_wh TO ROLE qa_tester;

-- Production grants (restrictive)
GRANT USAGE ON DATABASE prod_analytics TO ROLE prod_analyst;
GRANT SELECT ON ALL TABLES IN SCHEMA prod_analytics.analytics TO ROLE prod_analyst;
GRANT SELECT ON FUTURE TABLES IN SCHEMA prod_analytics.analytics TO ROLE prod_analyst;
GRANT USAGE ON WAREHOUSE prod_analytics_wh TO ROLE prod_analyst;

-- ETL role gets write access to specific schemas only
GRANT ALL ON SCHEMA prod_analytics.raw TO ROLE prod_etl;
GRANT ALL ON SCHEMA prod_analytics.staging TO ROLE prod_etl;

6.2 Environment Separation
-- Network policy per environment
CREATE NETWORK POLICY dev_network_policy
    ALLOWED_IP_LIST = ('10.0.0.0/8')  -- Internal only
    COMMENT = 'Development network access';

CREATE NETWORK POLICY prod_network_policy
    ALLOWED_IP_LIST = (
        '10.0.0.0/8',      -- Internal
        '192.168.1.0/24'   -- VPN
    )
    COMMENT = 'Production network access';

-- Apply to environment-specific roles
ALTER USER dev_user SET NETWORK_POLICY = dev_network_policy;
ALTER USER prod_etl_user SET NETWORK_POLICY = prod_network_policy;

7. Monitoring and Governance
7.1 Environment Usage Tracking
-- Track resource usage by environment
CREATE OR REPLACE VIEW admin.environment_usage AS
SELECT
    CASE
        WHEN warehouse_name LIKE 'DEV%' THEN 'Development'
        WHEN warehouse_name LIKE 'QA%' THEN 'QA'
        WHEN warehouse_name LIKE 'PROD%' THEN 'Production'
        ELSE 'Other'
    END AS environment,
    DATE_TRUNC('day', start_time) AS usage_date,
    SUM(credits_used) AS total_credits,
    COUNT(DISTINCT user_name) AS unique_users,
    COUNT(*) AS query_count
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE start_time >= DATEADD('month', -1, CURRENT_TIMESTAMP())
GROUP BY environment, DATE_TRUNC('day', start_time)
ORDER BY usage_date DESC, environment;

7.2 Cost Allocation
-- Resource monitors per environment
CREATE RESOURCE MONITOR dev_monitor
    WITH CREDIT_QUOTA = 100
    TRIGGERS
        ON 75 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND;

CREATE RESOURCE MONITOR qa_monitor
    WITH CREDIT_QUOTA = 200
    TRIGGERS
        ON 75 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND;

CREATE RESOURCE MONITOR prod_monitor
    WITH CREDIT_QUOTA = 5000
    TRIGGERS
        ON 50 PERCENT DO NOTIFY
        ON 75 PERCENT DO NOTIFY
        ON 90 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND_IMMEDIATE;

-- Apply to warehouses
ALTER WAREHOUSE dev_wh_general SET RESOURCE_MONITOR = dev_monitor;
ALTER WAREHOUSE qa_wh SET RESOURCE_MONITOR = qa_monitor;
ALTER WAREHOUSE prod_etl_wh SET RESOURCE_MONITOR = prod_monitor;

8. Best Practices
8.1 Environment Management ChecklistPracticeDescriptionIsolationSeparate databases per environmentParityKeep schema structure identicalData maskingMask sensitive data in non-prodAccess controlLeast privilege per environmentCost trackingResource monitors per environmentPromotion workflowAutomated code promotion
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