Snowflake Environment Management Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerDevOps Team
1. Executive Summary
Effective environment management in Snowflake involves setting up isolated development, testing, and production environments with appropriate access controls, data management, and promotion workflows. This guide covers multi-environment strategies and best practices.
2. Environment Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    ENVIRONMENT ARCHITECTURE                                  │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  DEVELOPMENT                                                         │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  DEV_DB         │  │  DEV_WH         │  │  DEV_ROLE       │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Sandboxes    │  │  • XSMALL       │  │  • Full access  │     │    │
│  │  │  • Sample data  │  │  • Per-developer│  │  • Write perms  │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                               Promotion                                      │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  QUALITY ASSURANCE                                                   │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  QA_DB          │  │  QA_WH          │  │  QA_ROLE        │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Test data    │  │  • SMALL        │  │  • Read/Write   │     │    │
│  │  │  • Full schema  │  │  • Shared       │  │  • Test perms   │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                               Promotion                                      │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │  PRODUCTION                                                          │    │
│  │  ┌─────────────────┐  ┌─────────────────┐  ┌─────────────────┐     │    │
│  │  │  PROD_DB        │  │  PROD_WH        │  │  PROD_ROLE      │     │    │
│  │  │                 │  │                 │  │                 │     │    │
│  │  │  • Live data    │  │  • MEDIUM+      │  │  • Read-only    │     │    │
│  │  │  • Full schema  │  │  • Auto-scale   │  │  • Restricted   │     │    │
│  │  └─────────────────┘  └─────────────────┘  └─────────────────┘     │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘

3. Environment Setup
3.1 Database per Environment
-- Create environment-specific databases
CREATE DATABASE dev_analytics
    DATA_RETENTION_TIME_IN_DAYS = 1
    COMMENT = 'Development analytics database';

CREATE DATABASE qa_analytics
    DATA_RETENTION_TIME_IN_DAYS = 7
    COMMENT = 'QA analytics database';

CREATE DATABASE prod_analytics
    DATA_RETENTION_TIME_IN_DAYS = 90
    COMMENT = 'Production analytics database';

-- Create identical schema structure
CREATE SCHEMA dev_analytics.raw;
CREATE SCHEMA dev_analytics.staging;
CREATE SCHEMA dev_analytics.analytics;

CREATE SCHEMA qa_analytics.raw;
CREATE SCHEMA qa_analytics.staging;
CREATE SCHEMA qa_analytics.analytics;

CREATE SCHEMA prod_analytics.raw;
CREATE SCHEMA prod_analytics.staging;
CREATE SCHEMA prod_analytics.analytics;

3.2 Warehouses per Environment
-- Development warehouses (small, per-developer)
CREATE WAREHOUSE dev_wh_general
    WAREHOUSE_SIZE = 'XSMALL'
    AUTO_SUSPEND = 60
    AUTO_RESUME = TRUE
    COMMENT = 'Shared development warehouse';

-- QA warehouse
CREATE WAREHOUSE qa_wh
    WAREHOUSE_SIZE = 'SMALL'
    AUTO_SUSPEND = 120
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 2
    COMMENT = 'QA testing warehouse';

-- Production warehouses (larger, multi-cluster)
CREATE WAREHOUSE prod_etl_wh
    WAREHOUSE_SIZE = 'MEDIUM'
    AUTO_SUSPEND = 300
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 4
    SCALING_POLICY = 'ECONOMY'
    COMMENT = 'Production ETL warehouse';

CREATE WAREHOUSE prod_analytics_wh
    WAREHOUSE_SIZE = 'LARGE'
    AUTO_SUSPEND = 300
    AUTO_RESUME = TRUE
    MIN_CLUSTER_COUNT = 1
    MAX_CLUSTER_COUNT = 6
    SCALING_POLICY = 'STANDARD'
    COMMENT = 'Production analytics warehouse';

3.3 Role Hierarchy
-- Create environment-specific roles
-- Development
CREATE ROLE dev_admin;
CREATE ROLE dev_developer;
CREATE ROLE dev_analyst;

-- QA
CREATE ROLE qa_admin;
CREATE ROLE qa_tester;
CREATE ROLE qa_analyst;

-- Production
CREATE ROLE prod_admin;
CREATE ROLE prod_etl;
CREATE ROLE prod_analyst;
CREATE ROLE prod_viewer;

-- Role hierarchy
GRANT ROLE dev_analyst TO ROLE dev_developer;
GRANT ROLE dev_developer TO ROLE dev_admin;

GRANT ROLE qa_analyst TO ROLE qa_tester;
GRANT ROLE qa_tester TO ROLE qa_admin;

GRANT ROLE prod_viewer TO ROLE prod_analyst;
GRANT ROLE prod_analyst TO ROLE prod_etl;
GRANT ROLE prod_etl TO ROLE prod_admin;

-- Grant environment roles to SYSADMIN
GRANT ROLE dev_admin TO ROLE SYSADMIN;
GRANT ROLE qa_admin TO ROLE SYSADMIN;
GRANT ROLE prod_admin TO ROLE SYSADMIN;

4. Data Management
4.1 Test Data Generation
-- Create synthetic test data for dev/QA
CREATE OR REPLACE PROCEDURE dev_analytics.util.generate_test_data(num_records NUMBER)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Generate customers
    INSERT INTO dev_analytics.raw.customers
    SELECT
        SEQ4() AS customer_id,
        'Customer_' || SEQ4() AS customer_name,
        'customer' || SEQ4() || '@test.com' AS email,
        ARRAY_CONSTRUCT('North', 'South', 'East', 'West')[UNIFORM(0, 3, RANDOM())] AS region
    FROM TABLE(GENERATOR(ROWCOUNT => :num_records));

    -- Generate orders
    INSERT INTO dev_analytics.raw.orders
    SELECT
        SEQ4() AS order_id,
        UNIFORM(1, :num_records, RANDOM()) AS customer_id,
        DATEADD('day', -UNIFORM(0, 365, RANDOM()), CURRENT_DATE()) AS order_date,
        ROUND(UNIFORM(10, 1000, RANDOM()), 2) AS amount
    FROM TABLE(GENERATOR(ROWCOUNT => :num_records * 10));

    RETURN 'Generated ' || :num_records || ' customers and ' || (:num_records * 10) || ' orders';
END;
$$;

-- Generate test data
CALL dev_analytics.util.generate_test_data(1000);

4.2 Data Cloning
-- Clone production data to QA (zero-copy)
CREATE DATABASE qa_analytics_refresh CLONE prod_analytics;

-- Clone specific schema
CREATE SCHEMA qa_analytics.analytics_refresh
    CLONE prod_analytics.analytics;

-- Clone with data masking procedure
CREATE OR REPLACE PROCEDURE qa_analytics.util.refresh_from_prod()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Clone tables
    CREATE OR REPLACE TABLE qa_analytics.raw.customers
        CLONE prod_analytics.raw.customers;

    -- Mask sensitive data
    UPDATE qa_analytics.raw.customers
    SET
        email = CONCAT('masked_', customer_id, '@test.com'),
        phone = '555-000-0000',
        ssn = 'XXX-XX-' || RIGHT(ssn, 4);

    RETURN 'QA data refreshed and masked';
END;
$$;

4.3 Data Subsetting
-- Create subset of production data for dev
CREATE OR REPLACE PROCEDURE dev_analytics.util.create_dev_subset()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
    -- Get recent customers only
    CREATE OR REPLACE TABLE dev_analytics.raw.customers AS
    SELECT * FROM prod_analytics.raw.customers
    WHERE created_date >= DATEADD('month', -3, CURRENT_DATE())
    SAMPLE (10000 ROWS);

    -- Get orders for those customers
    CREATE OR REPLACE TABLE dev_analytics.raw.orders AS
    SELECT o.*
    FROM prod_analytics.raw.orders o
    INNER JOIN dev_analytics.raw.customers c
        ON o.customer_id = c.customer_id;

    RETURN 'Dev subset created';
END;
$$;

5. Promotion Workflows
5.1 Code Promotion
-- Promotion procedure: DEV -> QA
CREATE OR REPLACE PROCEDURE admin.promote_to_qa(object_type VARCHAR, object_name VARCHAR)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
    ddl_statement VARCHAR;
BEGIN
    -- Get DDL from dev
    SELECT GET_DDL(:object_type, 'DEV_ANALYTICS.' || :object_name) INTO ddl_statement;

    -- Replace database reference
    ddl_statement := REPLACE(ddl_statement, 'DEV_ANALYTICS', 'QA_ANALYTICS');

    -- Execute in QA
    EXECUTE IMMEDIATE ddl_statement;

    -- Log promotion
    INSERT INTO admin.promotion_log (object_type, object_name, source_env, target_env, promoted_at, promoted_by)
    VALUES (:object_type, :object_name, 'DEV', 'QA', CURRENT_TIMESTAMP(), CURRENT_USER());

    RETURN 'Promoted ' || :object_type || ' ' || :object_name || ' to QA';
END;
$$;

-- Usage
CALL admin.promote_to_qa('VIEW', 'analytics.customer_summary');
CALL admin.promote_to_qa('PROCEDURE', 'analytics.refresh_metrics()');

5.2 Schema Comparison
-- Compare schemas between environments
CREATE OR REPLACE VIEW admin.schema_comparison AS
WITH dev_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'DEV' AS environment
    FROM dev_analytics.information_schema.tables
),
qa_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'QA' AS environment
    FROM qa_analytics.information_schema.tables
),
prod_objects AS (
    SELECT
        table_catalog AS database_name,
        table_schema AS schema_name,
        table_name AS object_name,
        table_type AS object_type,
        'PROD' AS environment
    FROM prod_analytics.information_schema.tables
)
SELECT
    COALESCE(d.schema_name, q.schema_name, p.schema_name) AS schema_name,
    COALESCE(d.object_name, q.object_name, p.object_name) AS object_name,
    COALESCE(d.object_type, q.object_type, p.object_type) AS object_type,
    CASE WHEN d.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_dev,
    CASE WHEN q.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_qa,
    CASE WHEN p.object_name IS NOT NULL THEN 'YES' ELSE 'NO' END AS in_prod
FROM dev_objects d
FULL OUTER JOIN qa_objects q
    ON d.schema_name = q.schema_name AND d.object_name = q.object_name
FULL OUTER JOIN prod_objects p
    ON COALESCE(d.schema_name, q.schema_name) = p.schema_name
    AND COALESCE(d.object_name, q.object_name) = p.object_name;

-- Find objects not in production
SELECT * FROM admin.schema_comparison
WHERE in_prod = 'NO' AND (in_dev = 'YES' OR in_qa = 'YES');

6. Access Control
6.1 Environment Grants
-- Development grants (permissive)
GRANT ALL ON DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON ALL SCHEMAS IN DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON ALL TABLES IN DATABASE dev_analytics TO ROLE dev_admin;
GRANT ALL ON FUTURE TABLES IN DATABASE dev_analytics TO ROLE dev_admin;

GRANT USAGE ON WAREHOUSE dev_wh_general TO ROLE dev_developer;
GRANT USAGE ON DATABASE dev_analytics TO ROLE dev_developer;
GRANT CREATE TABLE, CREATE VIEW ON ALL SCHEMAS IN DATABASE dev_analytics TO ROLE dev_developer;

-- QA grants (controlled)
GRANT USAGE ON DATABASE qa_analytics TO ROLE qa_tester;
GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN DATABASE qa_analytics TO ROLE qa_tester;
GRANT USAGE ON WAREHOUSE qa_wh TO ROLE qa_tester;

-- Production grants (restrictive)
GRANT USAGE ON DATABASE prod_analytics TO ROLE prod_analyst;
GRANT SELECT ON ALL TABLES IN SCHEMA prod_analytics.analytics TO ROLE prod_analyst;
GRANT SELECT ON FUTURE TABLES IN SCHEMA prod_analytics.analytics TO ROLE prod_analyst;
GRANT USAGE ON WAREHOUSE prod_analytics_wh TO ROLE prod_analyst;

-- ETL role gets write access to specific schemas only
GRANT ALL ON SCHEMA prod_analytics.raw TO ROLE prod_etl;
GRANT ALL ON SCHEMA prod_analytics.staging TO ROLE prod_etl;

6.2 Environment Separation
-- Network policy per environment
CREATE NETWORK POLICY dev_network_policy
    ALLOWED_IP_LIST = ('10.0.0.0/8')  -- Internal only
    COMMENT = 'Development network access';

CREATE NETWORK POLICY prod_network_policy
    ALLOWED_IP_LIST = (
        '10.0.0.0/8',      -- Internal
        '192.168.1.0/24'   -- VPN
    )
    COMMENT = 'Production network access';

-- Apply to environment-specific roles
ALTER USER dev_user SET NETWORK_POLICY = dev_network_policy;
ALTER USER prod_etl_user SET NETWORK_POLICY = prod_network_policy;

7. Monitoring and Governance
7.1 Environment Usage Tracking
-- Track resource usage by environment
CREATE OR REPLACE VIEW admin.environment_usage AS
SELECT
    CASE
        WHEN warehouse_name LIKE 'DEV%' THEN 'Development'
        WHEN warehouse_name LIKE 'QA%' THEN 'QA'
        WHEN warehouse_name LIKE 'PROD%' THEN 'Production'
        ELSE 'Other'
    END AS environment,
    DATE_TRUNC('day', start_time) AS usage_date,
    SUM(credits_used) AS total_credits,
    COUNT(DISTINCT user_name) AS unique_users,
    COUNT(*) AS query_count
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE start_time >= DATEADD('month', -1, CURRENT_TIMESTAMP())
GROUP BY environment, DATE_TRUNC('day', start_time)
ORDER BY usage_date DESC, environment;

7.2 Cost Allocation
-- Resource monitors per environment
CREATE RESOURCE MONITOR dev_monitor
    WITH CREDIT_QUOTA = 100
    TRIGGERS
        ON 75 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND;

CREATE RESOURCE MONITOR qa_monitor
    WITH CREDIT_QUOTA = 200
    TRIGGERS
        ON 75 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND;

CREATE RESOURCE MONITOR prod_monitor
    WITH CREDIT_QUOTA = 5000
    TRIGGERS
        ON 50 PERCENT DO NOTIFY
        ON 75 PERCENT DO NOTIFY
        ON 90 PERCENT DO NOTIFY
        ON 100 PERCENT DO SUSPEND_IMMEDIATE;

-- Apply to warehouses
ALTER WAREHOUSE dev_wh_general SET RESOURCE_MONITOR = dev_monitor;
ALTER WAREHOUSE qa_wh SET RESOURCE_MONITOR = qa_monitor;
ALTER WAREHOUSE prod_etl_wh SET RESOURCE_MONITOR = prod_monitor;

8. Best Practices
8.1 Environment Management ChecklistPracticeDescriptionIsolationSeparate databases per environmentParityKeep schema structure identicalData maskingMask sensitive data in non-prodAccess controlLeast privilege per environmentCost trackingResource monitors per environmentPromotion workflowAutomated code promotion
Document ControlVersionDateAuthorChanges1.02025-01-29DevOps TeamInitial document
This document is maintained by the DevOps Team.




