Snowflake Cost Management Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerFinOps Team
1. Executive Summary
Snowflake cost management involves understanding credit consumption, optimizing warehouse usage, managing storage costs, and implementing governance controls. This guide covers cost monitoring, optimization strategies, and best practices for controlling Snowflake spend.
2. Cost Structure
┌───┐
│ SNOWFLAKE COST COMPONENTS │
├───┤
│ │
│ ┌───┐ │
│ │ COMPUTE COSTS (Credits) ~70-80% │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Warehouses │ │ Serverless │ │ Cloud Services │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Query exec │ │ • Snowpipe │ │ • Always on │ │ │
│ │ │ • Size based │ │ • Tasks │ │ • Metadata │ │ │
│ │ │ • Per-second │ │ • Auto-scaling │ │ • Auth/security │ │ │
│ │ │ billing │ │ │ │ │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ STORAGE COSTS ~10-20% │ │
│ │ │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ Active Data │ │ Time Travel │ │ Fail-safe │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ • Tables/Views │ │ • 0-90 days │ │ • 7 days │ │ │
│ │ │ • Stages │ │ • Configurable │ │ • Not billable │ │ │
│ │ │ • Compressed │ │ │ │ (Enterprise) │ │ │
│ │ └─────────────────┘ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │
│ ┌───┐ │
│ │ DATA TRANSFER COSTS ~5-10% │ │
│ │ │ │
│ │ • Cross-region data transfer │ │
│ │ • Cross-cloud replication │ │
│ │ • Data egress (COPY INTO external) │ │
│ └───┘ │
│ │
│ PRICING (varies by region and edition): │
│ • Standard: ~$2-3/credit │
│ • Enterprise: ~$3-4/credit │
│ • Business Critical: ~$4-5/credit │
│ • Storage: ~$23-40/TB/month │
│ │
└───┘

3. Cost Monitoring
3.1 Credit Consumption Analysis
-- Daily credit consumption by warehouse
SELECT
 warehouse_name,
 DATE_TRUNC('day', start_time) AS usage_date,
 SUM(credits_used) AS total_credits,
 SUM(credits_used_compute) AS compute_credits,
 SUM(credits_used_cloud_services) AS cloud_services_credits
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE start_time >= DATEADD('month', -1, CURRENT_TIMESTAMP())
GROUP BY warehouse_name, DATE_TRUNC('day', start_time)
ORDER BY usage_date DESC, total_credits DESC;

-- Monthly trend by warehouse
SELECT
 warehouse_name,
 DATE_TRUNC('month', start_time) AS month,
 SUM(credits_used) AS monthly_credits,
 SUM(credits_used) * 3.00 AS estimated_cost -- Adjust rate
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE start_time >= DATEADD('month', -6, CURRENT_TIMESTAMP())
GROUP BY warehouse_name, DATE_TRUNC('month', start_time)
ORDER BY month DESC, monthly_credits DESC;

-- Top credit consumers (users)
SELECT
 user_name,
 warehouse_name,
 SUM(total_elapsed_time) / 1000 / 60 / 60 AS total_hours,
 COUNT(*) AS query_count,
 SUM(credits_used_cloud_services) AS cloud_credits
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
GROUP BY user_name, warehouse_name
ORDER BY total_hours DESC
LIMIT 20;

3.2 Storage Cost Analysis
-- Storage by database
SELECT
 database_name,
 ROUND(SUM(average_database_bytes) / POWER(1024, 4), 2) AS avg_storage_tb,
 ROUND(SUM(average_failsafe_bytes) / POWER(1024, 4), 2) AS failsafe_tb,
 ROUND(SUM(average_database_bytes + average_failsafe_bytes) / POWER(1024, 4), 2) AS total_tb,
 ROUND(SUM(average_database_bytes + average_failsafe_bytes) / POWER(1024, 4) * 23, 2) AS estimated_monthly_cost
FROM SNOWFLAKE.ACCOUNT_USAGE.DATABASE_STORAGE_USAGE_HISTORY
WHERE usage_date = CURRENT_DATE() - 1
GROUP BY database_name
ORDER BY total_tb DESC;

-- Storage trend
SELECT
 DATE_TRUNC('week', usage_date) AS week,
 ROUND(SUM(average_database_bytes) / POWER(1024, 4), 2) AS total_storage_tb
FROM SNOWFLAKE.ACCOUNT_USAGE.DATABASE_STORAGE_USAGE_HISTORY
WHERE usage_date >= DATEADD('month', -3, CURRENT_DATE())
GROUP BY DATE_TRUNC('week', usage_date)
ORDER BY week;

-- Table storage breakdown
SELECT
 table_catalog AS database_name,
 table_schema AS schema_name,
 table_name,
 ROUND(bytes / POWER(1024, 3), 2) AS size_gb,
 row_count,
 ROUND(bytes / NULLIF(row_count, 0), 2) AS bytes_per_row
FROM INFORMATION_SCHEMA.TABLES
WHERE table_type = 'BASE TABLE'
ORDER BY bytes DESC
LIMIT 50;

3.3 Query Cost Analysis
-- Most expensive queries (by execution time)
SELECT
 query_id,
 user_name,
 warehouse_name,
 warehouse_size,
 execution_status,
 total_elapsed_time / 1000 AS elapsed_seconds,
 bytes_scanned / POWER(1024, 3) AS gb_scanned,
 rows_produced,
 credits_used_cloud_services,
 SUBSTR(query_text, 1, 200) AS query_preview
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
 AND total_elapsed_time > 60000 -- Over 1 minute
ORDER BY total_elapsed_time DESC
LIMIT 50;

-- Queries with high cloud services credits
SELECT
 query_id,
 user_name,
 query_type,
 credits_used_cloud_services,
 total_elapsed_time / 1000 AS elapsed_seconds,
 compilation_time / 1000 AS compile_seconds,
 SUBSTR(query_text, 1, 200) AS query_preview
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE credits_used_cloud_services > 0.1
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY credits_used_cloud_services DESC
LIMIT 50;

4. Resource Monitors
4.1 Creating Resource Monitors
-- Account-level resource monitor
CREATE RESOURCE MONITOR account_monthly_monitor
 WITH CREDIT_QUOTA = 10000
 FREQUENCY = MONTHLY
 START_TIMESTAMP = IMMEDIATELY
 TRIGGERS
 ON 50 PERCENT DO NOTIFY
 ON 75 PERCENT DO NOTIFY
 ON 90 PERCENT DO NOTIFY
 ON 100 PERCENT DO SUSPEND
 ON 110 PERCENT DO SUSPEND_IMMEDIATE;

-- Apply to account
ALTER ACCOUNT SET RESOURCE_MONITOR = account_monthly_monitor;

-- Warehouse-specific monitor
CREATE RESOURCE MONITOR etl_warehouse_monitor
 WITH CREDIT_QUOTA = 500
 FREQUENCY = WEEKLY
 START_TIMESTAMP = IMMEDIATELY
 TRIGGERS
 ON 75 PERCENT DO NOTIFY
 ON 100 PERCENT DO SUSPEND;

ALTER WAREHOUSE etl_wh SET RESOURCE_MONITOR = etl_warehouse_monitor;

-- Department/team monitors
CREATE RESOURCE MONITOR analytics_team_monitor
 WITH CREDIT_QUOTA = 2000
 FREQUENCY = MONTHLY
 TRIGGERS
 ON 80 PERCENT DO NOTIFY
 ON 100 PERCENT DO SUSPEND;

ALTER WAREHOUSE analytics_wh SET RESOURCE_MONITOR = analytics_team_monitor;

4.2 Monitor Management
-- View resource monitors
SHOW RESOURCE MONITORS;

-- Check monitor status
SELECT
 name,
 credit_quota,
 used_credits,
 remaining_credits,
 ROUND(used_credits / credit_quota * 100, 2) AS percent_used,
 frequency,
 start_time,
 end_time
FROM TABLE(INFORMATION_SCHEMA.RESOURCE_MONITORS());

-- Modify quota
ALTER RESOURCE MONITOR etl_warehouse_monitor SET CREDIT_QUOTA = 750;

-- Reset monitor (start fresh)
ALTER RESOURCE MONITOR etl_warehouse_monitor SET
 CREDIT_QUOTA = 500
 START_TIMESTAMP = IMMEDIATELY;

5. Cost Optimization
5.1 Warehouse Optimization
-- Identify idle warehouses
SELECT
 warehouse_name,
 MAX(end_time) AS last_used,
 DATEDIFF('day', MAX(end_time), CURRENT_TIMESTAMP()) AS days_idle
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
WHERE start_time >= DATEADD('month', -1, CURRENT_TIMESTAMP())
GROUP BY warehouse_name
HAVING DATEDIFF('day', MAX(end_time), CURRENT_TIMESTAMP()) > 7
ORDER BY days_idle DESC;

-- Warehouses with high queue time (need scaling)
SELECT
 warehouse_name,
 DATE_TRUNC('hour', start_time) AS hour,
 AVG(queued_provisioning_time) / 1000 AS avg_queue_seconds,
 AVG(queued_overload_time) / 1000 AS avg_overload_seconds,
 COUNT(*) AS query_count
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY warehouse_name, DATE_TRUNC('hour', start_time)
HAVING AVG(queued_provisioning_time) > 5000 OR AVG(queued_overload_time) > 5000
ORDER BY avg_queue_seconds DESC;

-- Right-sizing recommendations
SELECT
 warehouse_name,
 warehouse_size,
 COUNT(*) AS query_count,
 AVG(total_elapsed_time) / 1000 AS avg_duration_seconds,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY total_elapsed_time) / 1000 AS median_duration,
 PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY total_elapsed_time) / 1000 AS p95_duration
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -30, CURRENT_TIMESTAMP())
 AND execution_status = 'SUCCESS'
GROUP BY warehouse_name, warehouse_size
ORDER BY avg_duration_seconds DESC;

-- Optimize warehouse settings
ALTER WAREHOUSE analytics_wh SET
 AUTO_SUSPEND = 60, -- Reduce idle time
 AUTO_RESUME = TRUE,
 WAREHOUSE_SIZE = 'MEDIUM', -- Right-size
 MIN_CLUSTER_COUNT = 1,
 MAX_CLUSTER_COUNT = 3,
 SCALING_POLICY = 'ECONOMY'; -- Cost-focused scaling

5.2 Query Optimization
-- Queries without partition pruning
SELECT
 query_id,
 user_name,
 SUBSTR(query_text, 1, 200) AS query_preview,
 partitions_scanned,
 partitions_total,
 ROUND(partitions_scanned * 100.0 / NULLIF(partitions_total, 0), 2) AS pct_scanned,
 bytes_scanned / POWER(1024, 3) AS gb_scanned
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE partitions_total > 100
 AND partitions_scanned * 100.0 / NULLIF(partitions_total, 0) > 50
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY bytes_scanned DESC
LIMIT 50;

-- Queries with spillage (need larger warehouse or optimization)
SELECT
 query_id,
 user_name,
 warehouse_name,
 bytes_spilled_to_local_storage / POWER(1024, 3) AS local_spill_gb,
 bytes_spilled_to_remote_storage / POWER(1024, 3) AS remote_spill_gb,
 SUBSTR(query_text, 1, 200) AS query_preview
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE bytes_spilled_to_remote_storage > 0
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY bytes_spilled_to_remote_storage DESC
LIMIT 50;

-- Enable result caching
ALTER SESSION SET USE_CACHED_RESULT = TRUE;
ALTER ACCOUNT SET USE_CACHED_RESULT = TRUE;

5.3 Storage Optimization
-- Reduce Time Travel for non-critical tables
ALTER TABLE staging.temp_data SET DATA_RETENTION_TIME_IN_DAYS = 0;
ALTER TABLE analytics.daily_metrics SET DATA_RETENTION_TIME_IN_DAYS = 7;

-- Identify tables for Time Travel reduction
SELECT
 table_catalog,
 table_schema,
 table_name,
 retention_time,
 bytes / POWER(1024, 3) AS size_gb
FROM INFORMATION_SCHEMA.TABLES
WHERE retention_time > 7
 AND bytes > 1073741824 -- > 1GB
ORDER BY bytes DESC;

-- Drop unused objects
-- Review before dropping
SELECT
 table_catalog,
 table_schema,
 table_name,
 last_altered,
 DATEDIFF('day', last_altered, CURRENT_DATE()) AS days_since_altered
FROM INFORMATION_SCHEMA.TABLES
WHERE last_altered < DATEADD('month', -6, CURRENT_DATE())
 AND table_schema NOT IN ('INFORMATION_SCHEMA')
ORDER BY bytes DESC;

-- Reclaim storage from transient tables
TRUNCATE TABLE IF EXISTS staging.temp_processing;
DROP TABLE IF EXISTS staging.old_data;

6. Cost Allocation
6.1 Tagging Strategy
-- Create cost allocation tags
CREATE TAG finops.cost_center
 ALLOWED_VALUES 'ENGINEERING', 'ANALYTICS', 'MARKETING', 'FINANCE';

CREATE TAG finops.project;
CREATE TAG finops.team;

-- Apply tags to warehouses
ALTER WAREHOUSE analytics_wh SET TAG
 finops.cost_center = 'ANALYTICS',
 finops.team = 'BI_TEAM';

ALTER WAREHOUSE etl_wh SET TAG
 finops.cost_center = 'ENGINEERING',
 finops.team = 'DATA_ENGINEERING';

-- Apply tags to databases
ALTER DATABASE marketing_db SET TAG
 finops.cost_center = 'MARKETING',
 finops.project = 'CAMPAIGN_ANALYTICS';

6.2 Cost Allocation Reports
-- Cost by cost center
SELECT
 tr.tag_value AS cost_center,
 SUM(wmh.credits_used) AS total_credits,
 SUM(wmh.credits_used) * 3.00 AS estimated_cost
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY wmh
JOIN SNOWFLAKE.ACCOUNT_USAGE.TAG_REFERENCES tr
 ON wmh.warehouse_name = tr.object_name
 AND tr.tag_name = 'COST_CENTER'
WHERE wmh.start_time >= DATE_TRUNC('month', CURRENT_DATE())
GROUP BY tr.tag_value
ORDER BY total_credits DESC;

-- Cost by user/team
SELECT
 qh.user_name,
 qh.warehouse_name,
 SUM(qh.total_elapsed_time) / 1000 / 60 / 60 AS total_hours,
 COUNT(*) AS query_count,
 SUM(qh.credits_used_cloud_services) AS cloud_credits
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY qh
WHERE qh.start_time >= DATE_TRUNC('month', CURRENT_DATE())
GROUP BY qh.user_name, qh.warehouse_name
ORDER BY total_hours DESC;

7. Cost Governance
7.1 Automated Cost Controls
-- Task to suspend idle warehouses
CREATE OR REPLACE TASK finops.suspend_idle_warehouses
 WAREHOUSE = admin_wh
 SCHEDULE = 'USING CRON 0 * * * * UTC' -- Every hour
AS
DECLARE
 warehouse_cursor CURSOR FOR
 SELECT warehouse_name
 FROM INFORMATION_SCHEMA.WAREHOUSES
 WHERE state = 'STARTED'
 AND warehouse_name NOT IN ('ADMIN_WH', 'CRITICAL_WH');
BEGIN
 FOR record IN warehouse_cursor DO
 -- Check if warehouse has been idle
 IF (NOT EXISTS (
 SELECT 1 FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
 WHERE warehouse_name = record.warehouse_name
 AND start_time >= DATEADD('minute', -30, CURRENT_TIMESTAMP())
)) THEN
 EXECUTE IMMEDIATE 'ALTER WAREHOUSE ' || record.warehouse_name || ' SUSPEND';
 END IF;
 END FOR;
END;

ALTER TASK finops.suspend_idle_warehouses RESUME;

-- Alert on high spend
CREATE ALERT finops.high_spend_alert
 WAREHOUSE = admin_wh
 SCHEDULE = '1 HOUR'
 IF (EXISTS (
 SELECT 1
 FROM TABLE(INFORMATION_SCHEMA.RESOURCE_MONITORS())
 WHERE used_credits / credit_quota > 0.9
))
 THEN
 CALL send_alert('Resource monitor at 90% capacity');

8. Best Practices
8.1 Cost Management ChecklistPracticeDescriptionResource monitorsSet up for all warehousesAuto-suspendConfigure 60-300 secondsRight-sizingMatch warehouse size to workloadTime TravelReduce for non-critical dataQuery optimizationFix expensive queriesCost allocationTag resources by team/projectRegular reviewWeekly cost analysis
Document ControlVersionDateAuthorChanges1.02025-01-29FinOps TeamInitial document
This document is maintained by the FinOps Team.

