Snowflake Query Optimization Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerData Engineering Team
1. Executive Summary
Query optimization in Snowflake involves understanding the query profile, leveraging micro-partition pruning, optimizing joins, and using appropriate warehouse sizes. This guide covers techniques for improving query performance and reducing costs.
2. Query Performance Analysis
2.1 Query Profile
-- View recent query history
SELECT
 query_id,
 query_text,
 user_name,
 warehouse_name,
 warehouse_size,
 total_elapsed_time / 1000 AS elapsed_seconds,
 execution_time / 1000 AS execution_seconds,
 compilation_time / 1000 AS compile_seconds,
 bytes_scanned / POWER(1024, 3) AS gb_scanned,
 rows_produced,
 partitions_scanned,
 partitions_total,
 bytes_spilled_to_local_storage,
 bytes_spilled_to_remote_storage
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('hour', -24, CURRENT_TIMESTAMP())
ORDER BY total_elapsed_time DESC
LIMIT 20;

-- Query with detailed statistics
SELECT
 query_id,
 -- Time breakdown
 total_elapsed_time / 1000 AS total_seconds,
 compilation_time / 1000 AS compile_seconds,
 execution_time / 1000 AS execution_seconds,
 queued_provisioning_time / 1000 AS queue_provision_seconds,
 queued_overload_time / 1000 AS queue_overload_seconds,

 -- Data scanned
 bytes_scanned / POWER(1024, 3) AS gb_scanned,
 percentage_scanned_from_cache,

 -- Partition pruning
 partitions_scanned,
 partitions_total,
 ROUND(partitions_scanned * 100.0 / NULLIF(partitions_total, 0), 2) AS partition_scan_pct,

 -- Spillage
 bytes_spilled_to_local_storage / POWER(1024, 2) AS local_spill_mb,
 bytes_spilled_to_remote_storage / POWER(1024, 2) AS remote_spill_mb

FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_id = '<query_id>';

2.2 Understanding Query Plans
-- Explain plan
EXPLAIN
SELECT
 c.customer_name,
 SUM(o.amount) AS total_spend
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id
WHERE o.order_date >= '2025-01-01'
GROUP BY c.customer_name;

-- Explain with cost estimates
EXPLAIN USING JSON
SELECT * FROM large_table WHERE date_col = '2025-01-29';

3. Partition Pruning Optimization
3.1 Clustering Keys
-- Check current clustering information
SELECT SYSTEM$CLUSTERING_INFORMATION('analytics.fact_sales');

-- Check clustering depth
SELECT SYSTEM$CLUSTERING_DEPTH('analytics.fact_sales');

-- Add clustering key
ALTER TABLE analytics.fact_sales CLUSTER BY (sale_date);

-- Multi-column clustering (order matters)
ALTER TABLE analytics.fact_sales CLUSTER BY (sale_date, region);

-- Monitor clustering status
SELECT
 table_name,
 clustering_key,
 total_partition_count,
 average_overlaps,
 average_depth,
 CASE
 WHEN average_depth <= 2 THEN 'Well clustered'
 WHEN average_depth <= 5 THEN 'Moderately clustered'
 ELSE 'Needs reclustering'
 END AS clustering_status
FROM TABLE(INFORMATION_SCHEMA.AUTOMATIC_CLUSTERING_HISTORY())
WHERE table_name = 'FACT_SALES';

-- Manual recluster (usually automatic)
ALTER TABLE analytics.fact_sales RECLUSTER;

3.2 Effective Filtering
-- GOOD: Filter on clustering key
SELECT * FROM analytics.fact_sales
WHERE sale_date = '2025-01-29'; -- Excellent pruning

-- GOOD: Range filter on clustering key
SELECT * FROM analytics.fact_sales
WHERE sale_date BETWEEN '2025-01-01' AND '2025-01-31';

-- BAD: Function on clustering key prevents pruning
SELECT * FROM analytics.fact_sales
WHERE YEAR(sale_date) = 2025; -- Poor pruning

-- BETTER: Rewrite to enable pruning
SELECT * FROM analytics.fact_sales
WHERE sale_date >= '2025-01-01' AND sale_date < '2026-01-01';

-- BAD: OR conditions can hurt pruning
SELECT * FROM analytics.fact_sales
WHERE sale_date = '2025-01-29' OR amount > 1000;

-- BETTER: Split into UNION ALL
SELECT * FROM analytics.fact_sales WHERE sale_date = '2025-01-29'
UNION ALL
SELECT * FROM analytics.fact_sales WHERE amount > 1000 AND sale_date != '2025-01-29';

4. Join Optimization
4.1 Join Strategies
-- Snowflake automatically chooses join strategy
-- But understanding helps with optimization

-- HASH JOIN (default for large tables)
-- Good when join keys have many distinct values
SELECT o.*, c.customer_name
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id;

-- NESTED LOOP JOIN (for small tables or cross joins)
-- Avoid for large tables
SELECT * FROM table1 t1, table2 t2
WHERE t1.key LIKE '%pattern%'; -- May use nested loop

-- MERGE JOIN (for sorted data)
-- Efficient when both sides are sorted on join key
SELECT * FROM sorted_table1 t1
JOIN sorted_table2 t2 ON t1.sorted_key = t2.sorted_key;

4.2 Join Best Practices
-- GOOD: Filter before join
SELECT o.*, c.customer_name
FROM (
 SELECT * FROM orders WHERE order_date >= '2025-01-01'
) o
JOIN customers c ON o.customer_id = c.customer_id;

-- Or use CTE
WITH recent_orders AS (
 SELECT * FROM orders WHERE order_date >= '2025-01-01'
)
SELECT ro.*, c.customer_name
FROM recent_orders ro
JOIN customers c ON ro.customer_id = c.customer_id;

-- GOOD: Use appropriate join type
-- INNER JOIN when you need matches in both tables
SELECT o.*, c.customer_name
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id;

-- LEFT JOIN when you need all from left + matches
SELECT c.customer_name, COALESCE(SUM(o.amount), 0) AS total
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_name;

-- AVOID: Implicit cross joins
-- BAD
SELECT * FROM table1, table2; -- Cross join if no WHERE
-- GOOD
SELECT * FROM table1 CROSS JOIN table2; -- Explicit intent

4.3 Join Column Data Types
-- Ensure join columns have matching data types
-- BAD: Implicit conversion
SELECT *
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id::VARCHAR;

-- GOOD: Matching types
SELECT *
FROM orders o
JOIN customers c ON o.customer_id = c.customer_id;

-- Check data types
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_name IN ('ORDERS', 'CUSTOMERS')
 AND column_name = 'CUSTOMER_ID';

5. Aggregation Optimization
5.1 Efficient Aggregations
-- GOOD: Use appropriate aggregate functions
SELECT
 region,
 COUNT(*) AS order_count, -- Faster than COUNT(order_id)
 COUNT(DISTINCT customer_id) AS unique_customers,
 SUM(amount) AS total_revenue,
 AVG(amount) AS avg_order_value
FROM orders
GROUP BY region;

-- GOOD: Use APPROX_COUNT_DISTINCT for large datasets
SELECT
 region,
 APPROX_COUNT_DISTINCT(customer_id) AS approx_unique_customers
FROM orders
GROUP BY region;

-- Window functions - partition carefully
SELECT
 customer_id,
 order_date,
 amount,
 SUM(amount) OVER (
 PARTITION BY customer_id
 ORDER BY order_date
 ROWS UNBOUNDED PRECEDING
) AS running_total
FROM orders;

-- QUALIFY for filtering window results (more efficient than subquery)
SELECT customer_id, order_id, amount
FROM orders
QUALIFY ROW_NUMBER() OVER (PARTITION BY customer_id ORDER BY order_date DESC) = 1;

5.2 GROUP BY Optimization
-- GOOD: Group by column position for complex expressions
SELECT
 DATE_TRUNC('month', order_date) AS order_month,
 CASE WHEN amount > 1000 THEN 'High' ELSE 'Low' END AS order_tier,
 COUNT(*) AS order_count
FROM orders
GROUP BY 1, 2; -- References column positions

-- Use GROUPING SETS for multiple aggregation levels
SELECT
 COALESCE(region, 'ALL') AS region,
 COALESCE(category, 'ALL') AS category,
 SUM(amount) AS total
FROM orders
GROUP BY GROUPING SETS (
 (region, category),
 (region),
 (category),
 ()
);

6. Search Optimization
6.1 Search Optimization Service
-- Enable search optimization for point lookups
ALTER TABLE customers ADD SEARCH OPTIMIZATION;

-- Enable on specific columns
ALTER TABLE customers ADD SEARCH OPTIMIZATION
 ON EQUALITY(customer_id, email);

-- Enable on substring searches
ALTER TABLE customers ADD SEARCH OPTIMIZATION
 ON SUBSTRING(customer_name);

-- Check search optimization status
SHOW TABLES LIKE 'CUSTOMERS';
-- Look for search_optimization column

-- View search optimization cost
SELECT * FROM TABLE(INFORMATION_SCHEMA.SEARCH_OPTIMIZATION_HISTORY());

-- Drop search optimization
ALTER TABLE customers DROP SEARCH OPTIMIZATION;

6.2 When to Use Search Optimization
-- Good candidates:
-- 1. Point lookup queries
SELECT * FROM customers WHERE customer_id = '12345';

-- 2. IN list queries
SELECT * FROM orders WHERE order_id IN ('A1', 'A2', 'A3', 'A4', 'A5');

-- 3. Substring searches
SELECT * FROM products WHERE product_name LIKE '%keyword%';

-- 4. VARIANT field searches
SELECT * FROM events WHERE event_data:user_id = 'U123';

-- NOT good candidates:
-- Range queries (use clustering instead)
-- Full table scans
-- Small tables

7. Caching Strategies
7.1 Result Cache
-- Result cache is automatic
-- Same query + same data = cached result

-- Check cache utilization
SELECT
 query_id,
 query_text,
 percentage_scanned_from_cache
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('hour', -1, CURRENT_TIMESTAMP())
 AND percentage_scanned_from_cache > 0;

-- Disable cache for testing
ALTER SESSION SET USE_CACHED_RESULT = FALSE;

-- Re-enable
ALTER SESSION SET USE_CACHED_RESULT = TRUE;

7.2 Metadata Cache
-- Metadata operations use cache
-- These are fast:
SHOW TABLES;
DESCRIBE TABLE my_table;
SELECT COUNT(*) FROM my_table; -- Uses metadata if no filter

-- Force fresh count (bypass metadata)
SELECT COUNT(*) FROM my_table WHERE 1=1;

7.3 Warehouse Cache
-- Data cached in warehouse local SSD
-- Larger warehouses = more cache

-- Warm up cache for critical queries
SELECT * FROM fact_sales WHERE sale_date = CURRENT_DATE();

-- Check cache hit ratio
SELECT
 warehouse_name,
 SUM(bytes_scanned) AS total_bytes,
 SUM(bytes_scanned * percentage_scanned_from_cache / 100) AS bytes_from_cache,
 ROUND(SUM(bytes_scanned * percentage_scanned_from_cache / 100) * 100.0 /
 NULLIF(SUM(bytes_scanned), 0), 2) AS cache_hit_pct
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -1, CURRENT_TIMESTAMP())
GROUP BY warehouse_name;

8. Best Practices Summary
8.1 Query Optimization ChecklistAreaBest PracticeFilteringFilter early, use clustering keysJoinsFilter before join, match data typesAggregationsUse APPROX functions for estimatesSELECTOnly select needed columnsSubqueriesPrefer CTEs or joinsCachingLeverage result cacheClusteringCluster on frequently filtered columnsSearch optEnable for point lookups
8.2 Anti-Patterns to Avoid
-- AVOID: SELECT *
SELECT * FROM large_table; -- Select only needed columns

-- AVOID: Functions on filter columns
WHERE UPPER(name) = 'JOHN'; -- Store normalized or use COLLATE

-- AVOID: Implicit conversions
WHERE numeric_col = '123'; -- Use proper types

-- AVOID: Correlated subqueries
SELECT * FROM orders o
WHERE amount > (SELECT AVG(amount) FROM orders WHERE customer_id = o.customer_id);
-- BETTER: Use window function
SELECT * FROM (
 SELECT *, AVG(amount) OVER (PARTITION BY customer_id) AS avg_amount
 FROM orders
) WHERE amount > avg_amount;

Document ControlVersionDateAuthorChanges1.02025-01-29Data Engineering TeamInitial document
This document is maintained by the Data Engineering Team.

