Snowflake Disaster Recovery Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerOperations Team
1. Executive Summary
Disaster Recovery (DR) in Snowflake involves Time Travel, Fail-safe, database replication, and failover groups to ensure business continuity. This guide covers DR strategies, recovery procedures, and best practices for data protection.
2. DR Architecture
┌───┐
│ SNOWFLAKE DR ARCHITECTURE │
├───┤
│ │
│ DATA PROTECTION LAYERS │
│ │
│ ┌───┐ │
│ │ TIME TRAVEL (0-90 days) │ │
│ │ • Self-service recovery │ │
│ │ • Query historical data │ │
│ │ • Restore tables/schemas │ │
│ │ • Configurable retention │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ FAIL-SAFE (7 days after Time Travel) │ │
│ │ • Snowflake-managed recovery │ │
│ │ • Contact support for recovery │ │
│ │ • Last resort protection │ │
│ └───┘ │
│ │ │
│ ▼ │
│ ┌───┐ │
│ │ REPLICATION (Cross-region/cloud) │ │
│ │ ┌─────────────────┐ ┌─────────────────┐ │ │
│ │ │ PRIMARY │ Async │ SECONDARY │ │ │
│ │ │ Region │ ────────►│ Region │ │ │
│ │ │ (Active) │ Repl. │ (Standby) │ │ │
│ │ └─────────────────┘ └─────────────────┘ │ │
│ └───┘ │
│ │
│ RECOVERY OPTIONS: │
│ • Point-in-time: Time Travel │
│ • Accidental deletion: UNDROP │
│ • Region failure: Failover to secondary │
│ • Catastrophic: Fail-safe recovery │
│ │
└───┘

3. Time Travel Recovery
3.1 Querying Historical Data
-- Query table at specific timestamp
SELECT * FROM analytics.customers
AT (TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Query table at specific offset
SELECT * FROM analytics.customers
AT (OFFSET => -3600); -- 1 hour ago (in seconds)

-- Query before specific statement
SELECT * FROM analytics.customers
BEFORE (STATEMENT => '01a2b3c4-5678-9def-0123-456789abcdef');

-- Compare current vs historical
SELECT
 'current' AS version,
 COUNT(*) AS row_count,
 SUM(amount) AS total
FROM analytics.orders
UNION ALL
SELECT
 'yesterday' AS version,
 COUNT(*) AS row_count,
 SUM(amount) AS total
FROM analytics.orders
AT (TIMESTAMP => DATEADD('day', -1, CURRENT_TIMESTAMP()));

3.2 Restoring Tables
-- Clone table from point in time
CREATE TABLE analytics.customers_restored
CLONE analytics.customers
AT (TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Clone schema from point in time
CREATE SCHEMA analytics_restored
CLONE analytics
AT (TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Clone database from point in time
CREATE DATABASE analytics_db_restored
CLONE analytics_db
AT (TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP);

-- Restore specific rows
INSERT INTO analytics.customers
SELECT * FROM analytics.customers
AT (TIMESTAMP => '2025-01-28 10:00:00'::TIMESTAMP)
WHERE customer_id NOT IN (SELECT customer_id FROM analytics.customers);

3.3 UNDROP Objects
-- Undrop table
DROP TABLE analytics.customers;
-- Oops! Restore it:
UNDROP TABLE analytics.customers;

-- Undrop schema
DROP SCHEMA analytics;
UNDROP SCHEMA analytics;

-- Undrop database
DROP DATABASE analytics_db;
UNDROP DATABASE analytics_db;

-- View dropped objects
SHOW TABLES HISTORY IN SCHEMA analytics;
SHOW SCHEMAS HISTORY IN DATABASE analytics_db;
SHOW DATABASES HISTORY;

-- Undrop when name conflict exists
-- First rename existing object
ALTER TABLE analytics.customers RENAME TO analytics.customers_new;
-- Then undrop
UNDROP TABLE analytics.customers;

3.4 Time Travel Configuration
-- Check current retention settings
SHOW TABLES LIKE 'CUSTOMERS' IN SCHEMA analytics;
-- Look at retention_time column

-- Set Time Travel retention (0-90 days, depends on edition)
ALTER TABLE analytics.customers SET DATA_RETENTION_TIME_IN_DAYS = 30;
ALTER SCHEMA analytics SET DATA_RETENTION_TIME_IN_DAYS = 14;
ALTER DATABASE analytics_db SET DATA_RETENTION_TIME_IN_DAYS = 7;

-- Account level default
ALTER ACCOUNT SET DATA_RETENTION_TIME_IN_DAYS = 7;

-- Transient tables (max 1 day Time Travel, no Fail-safe)
CREATE TRANSIENT TABLE staging.temp_data (
 id NUMBER,
 data VARCHAR
) DATA_RETENTION_TIME_IN_DAYS = 1;

-- Temporary tables (session-scoped, no Time Travel)
CREATE TEMPORARY TABLE session_temp (
 id NUMBER
);

4. Fail-Safe Recovery
4.1 Understanding Fail-Safe
Fail-Safe Period:
- Begins after Time Travel period expires
- Lasts 7 days (non-configurable)
- Data is recoverable ONLY by Snowflake Support
- Incurs storage costs
- Not available for transient/temporary tables

Recovery Process:
1. Contact Snowflake Support
2. Provide account details and object information
3. Snowflake engineers perform recovery
4. May take 24+ hours for large datasets

4.2 Requesting Fail-Safe Recovery
-- Information needed for Fail-Safe recovery request:
-- 1. Account identifier
SELECT CURRENT_ACCOUNT();

-- 2. Object details (database, schema, table name)
-- 3. Approximate time of deletion/modification
-- 4. Query ID that caused the issue (if known)

-- Check query history for the problematic query
SELECT
 query_id,
 query_text,
 user_name,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_text ILIKE '%DROP%customers%'
 OR query_text ILIKE '%DELETE%customers%'
ORDER BY start_time DESC
LIMIT 20;

5. Replication and Failover
5.1 Database Replication Setup
-- On PRIMARY account: Enable replication
ALTER DATABASE prod_db ENABLE REPLICATION TO ACCOUNTS
 org_name.secondary_account;

-- On SECONDARY account: Create replica
CREATE DATABASE prod_db_replica
AS REPLICA OF org_name.primary_account.prod_db;

-- Refresh replica manually
ALTER DATABASE prod_db_replica REFRESH;

-- Check replication status
SELECT
 database_name,
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp,
 TIMESTAMPDIFF('minute',
 primary_snapshot_timestamp,
 secondary_snapshot_timestamp
) AS lag_minutes
FROM TABLE(INFORMATION_SCHEMA.DATABASE_REPLICATION_USAGE_HISTORY());

5.2 Failover Groups
-- On PRIMARY: Create failover group
CREATE FAILOVER GROUP prod_failover_group
 OBJECT_TYPES = DATABASES, USERS, ROLES, WAREHOUSES
 ALLOWED_DATABASES = prod_db, analytics_db
 ALLOWED_ACCOUNTS = org_name.secondary_account
 REPLICATION_SCHEDULE = '10 MINUTE';

-- On SECONDARY: Create secondary failover group
CREATE FAILOVER GROUP prod_failover_group
AS REPLICA OF org_name.primary_account.prod_failover_group;

-- View failover group status
SHOW FAILOVER GROUPS;

-- Initiate failover (on SECONDARY, becomes PRIMARY)
ALTER FAILOVER GROUP prod_failover_group PRIMARY;

5.3 Failover Procedures
-- Pre-failover checklist
-- 1. Check replication lag
SELECT
 TIMESTAMPDIFF('minute',
 primary_snapshot_timestamp,
 CURRENT_TIMESTAMP()
) AS lag_minutes
FROM TABLE(INFORMATION_SCHEMA.FAILOVER_GROUP_REFRESH_PROGRESS('prod_failover_group'));

-- 2. Verify secondary health
SHOW FAILOVER GROUPS;

-- 3. Execute failover
ALTER FAILOVER GROUP prod_failover_group PRIMARY;

-- 4. Verify failover success
SHOW FAILOVER GROUPS;
-- is_primary should now be TRUE on secondary

-- 5. Update application connection strings
-- Point to new primary account URL

-- 6. Verify applications are working

-- Failback procedure (when original primary is recovered)
-- On original primary (now secondary):
ALTER FAILOVER GROUP prod_failover_group PRIMARY;

6. DR Testing
6.1 Regular DR Tests
-- Monthly DR test procedure
CREATE OR REPLACE PROCEDURE ops.dr_test_procedure()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 test_results VARCHAR := '';
BEGIN
 -- Test 1: Time Travel recovery
 CREATE TABLE dr_test.time_travel_test AS SELECT * FROM analytics.customers LIMIT 100;
 UPDATE dr_test.time_travel_test SET customer_name = 'TEST';

 -- Verify we can recover
 CREATE TABLE dr_test.time_travel_recovered
 CLONE dr_test.time_travel_test
 AT (OFFSET => -60); -- 1 minute ago

 test_results := test_results || 'Time Travel: PASS\n';

 -- Test 2: UNDROP
 DROP TABLE dr_test.time_travel_test;
 UNDROP TABLE dr_test.time_travel_test;
 test_results := test_results || 'UNDROP: PASS\n';

 -- Test 3: Check replication lag
 -- (Add replication check if configured)

 -- Cleanup
 DROP TABLE dr_test.time_travel_test;
 DROP TABLE dr_test.time_travel_recovered;

 RETURN test_results;
END;
$$;

-- Schedule monthly DR test
CREATE TASK ops.monthly_dr_test
 WAREHOUSE = ops_wh
 SCHEDULE = 'USING CRON 0 2 1 * * UTC' -- First of each month
AS
CALL ops.dr_test_procedure();

6.2 DR Test Checklist
/*
DR Test Checklist:

1. Time Travel Tests
 [] Query historical data
 [] Clone table from past timestamp
 [] Verify data integrity

2. UNDROP Tests
 [] Drop and undrop table
 [] Drop and undrop schema
 [] Verify object restoration

3. Replication Tests (if configured)
 [] Check replication lag
 [] Refresh secondary manually
 [] Verify data consistency

4. Failover Tests (quarterly)
 [] Execute failover to secondary
 [] Verify application connectivity
 [] Execute failback to primary
 [] Document RTO/RPO achieved

5. Documentation
 [] Update runbooks
 [] Verify contact lists
 [] Test notification procedures
*/

7. Recovery Runbooks
7.1 Accidental Table Drop
-- Runbook: Accidental Table Drop Recovery

-- Step 1: Identify the dropped table
SHOW TABLES HISTORY IN SCHEMA analytics;

-- Step 2: Check if within Time Travel period
-- Look at dropped_on column

-- Step 3: If within Time Travel, UNDROP
UNDROP TABLE analytics.customers;

-- Step 4: If name conflict, rename existing first
ALTER TABLE analytics.customers RENAME TO analytics.customers_temp;
UNDROP TABLE analytics.customers;
-- Then merge data if needed

-- Step 5: If beyond Time Travel but within Fail-safe
-- Contact Snowflake Support immediately
-- Provide: Account ID, Database, Schema, Table name, Drop timestamp

-- Step 6: Verify recovery
SELECT COUNT(*) FROM analytics.customers;

7.2 Accidental Data Modification
-- Runbook: Accidental UPDATE/DELETE Recovery

-- Step 1: Identify the problematic query
SELECT query_id, query_text, start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_text ILIKE '%UPDATE%customers%'
 OR query_text ILIKE '%DELETE%customers%'
ORDER BY start_time DESC;

-- Step 2: Query the table before the change
SELECT * FROM analytics.customers
BEFORE (STATEMENT => '<problematic_query_id>');

-- Step 3: Option A - Restore entire table
CREATE TABLE analytics.customers_restored
CLONE analytics.customers
BEFORE (STATEMENT => '<problematic_query_id>');

-- Swap tables
ALTER TABLE analytics.customers RENAME TO analytics.customers_corrupted;
ALTER TABLE analytics.customers_restored RENAME TO analytics.customers;

-- Step 4: Option B - Restore specific rows
INSERT INTO analytics.customers
SELECT * FROM analytics.customers
BEFORE (STATEMENT => '<problematic_query_id>')
WHERE customer_id IN (<affected_ids>);

-- Step 5: Verify recovery
SELECT * FROM analytics.customers WHERE customer_id IN (<affected_ids>);

8. Best Practices
8.1 DR ChecklistPracticeDescriptionTime TravelConfigure appropriate retentionCritical tables90 days retention (Enterprise)Staging tablesTransient with 0-1 day retentionReplicationEnable for production databasesFailover testingQuarterly failover drillsDocumentationMaintain current runbooksMonitoringAlert on replication lag
8.2 RTO/RPO Guidelines
/*
Recovery Time Objective (RTO):
- Time Travel recovery: Minutes
- UNDROP: Seconds
- Replication failover: Minutes
- Fail-safe recovery: 24+ hours

Recovery Point Objective (RPO):
- Time Travel: Configurable (0-90 days)
- Replication: Based on schedule (1-60 minutes typical)
- Fail-safe: Up to 7 days after Time Travel

Recommended Settings:
Table Type	Time Travel	Replication
Critical	90 days	5 min
Important	30 days	15 min
Standard	7 days	1 hour
Staging	1 day	None
*/

Document ControlVersionDateAuthorChanges1.02025-01-29Operations TeamInitial document
This document is maintained by the Operations Team.

