Snowflake Monitoring & Alerting Guide
Document InformationFieldValueVersion1.0Last Updated2025-01-29ClassificationInternal UseOwnerOperations Team
1. Executive Summary
Effective monitoring and alerting in Snowflake enables proactive issue detection, performance optimization, and cost control. This guide covers native alerting, monitoring views, integration with external tools, and best practices for operational excellence.
2. Monitoring Architecture
┌───┐
│ SNOWFLAKE MONITORING ARCHITECTURE │
├───┤
│ │
│ DATA SOURCES MONITORING LAYER │
│ ┌─────────────────────────────┐ ┌─────────────────────────────┐ │
│ │ ACCOUNT_USAGE Views │ │ │ │
│ │ • QUERY_HISTORY │───────►│ MONITORING QUERIES │ │
│ │ • WAREHOUSE_METERING │ │ & VIEWS │ │
│ │ • LOGIN_HISTORY │ │ │ │
│ │ • STORAGE_USAGE │ │ • Performance KPIs │ │
│ │ • ACCESS_HISTORY │ │ • Cost tracking │ │
│ └─────────────────────────────┘ │ • Security events │ │
│ │ • Data quality │ │
│ ┌─────────────────────────────┐ └─────────────┬───────────────┘ │
│ │ INFORMATION_SCHEMA │ │ │
│ │ • Real-time metadata │ │ │
│ │ • Current session info │ ▼ │
│ └─────────────────────────────┘ ┌─────────────────────────────┐ │
│ │ │ │
│ ┌─────────────────────────────┐ │ SNOWFLAKE ALERTS │ │
│ │ ORGANIZATION_USAGE │ │ │ │
│ │ • Cross-account metrics │ │ • Scheduled checks │ │
│ │ • Org-wide costs │ │ • Conditional triggers │ │
│ └─────────────────────────────┘ │ • Notifications │ │
│ └─────────────┬───────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────┐ │
│ │ EXTERNAL INTEGRATIONS │ │
│ │ │ │
│ │ • PagerDuty / OpsGenie │ │
│ │ • Slack / Teams │ │
│ │ • Datadog / Grafana │ │
│ │ • Email notifications │ │
│ └─────────────────────────────┘ │
│ │
└───┘

3. Snowflake Native Alerts
3.1 Creating Alerts
-- Alert for long-running queries
CREATE OR REPLACE ALERT ops.long_running_query_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '5 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY(
 DATEADD_PARTS => 'minute',
 DATE_RANGE_START => DATEADD('minute', -10, CURRENT_TIMESTAMP())
))
 WHERE execution_status = 'RUNNING'
 AND TIMESTAMPDIFF('minute', start_time, CURRENT_TIMESTAMP()) > 30
))
 THEN
 CALL ops.send_notification('Long running query detected (>30 min)');

-- Alert for failed queries
CREATE OR REPLACE ALERT ops.failed_query_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '5 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
 WHERE execution_status = 'FAIL'
 AND start_time >= DATEADD('minute', -10, CURRENT_TIMESTAMP())
 AND error_code NOT IN ('000630') -- Exclude cancelled queries
))
 THEN
 CALL ops.send_notification('Query failures detected');

-- Alert for warehouse queue time
CREATE OR REPLACE ALERT ops.warehouse_queue_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '10 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
 WHERE start_time >= DATEADD('minute', -15, CURRENT_TIMESTAMP())
 AND queued_provisioning_time > 30000 -- 30 seconds
))
 THEN
 CALL ops.send_notification('High warehouse queue times detected');

-- Alert for storage growth
CREATE OR REPLACE ALERT ops.storage_growth_alert
 WAREHOUSE = alert_wh
 SCHEDULE = 'USING CRON 0 6 * * * UTC' -- Daily at 6 AM
 IF (EXISTS (
 SELECT 1
 FROM (
 SELECT
 SUM(average_database_bytes) AS today_bytes,
 LAG(SUM(average_database_bytes)) OVER (ORDER BY usage_date) AS yesterday_bytes
 FROM SNOWFLAKE.ACCOUNT_USAGE.DATABASE_STORAGE_USAGE_HISTORY
 WHERE usage_date >= DATEADD('day', -2, CURRENT_DATE())
 GROUP BY usage_date
)
 WHERE (today_bytes - yesterday_bytes) / NULLIF(yesterday_bytes, 0) > 0.1 -- 10% growth
))
 THEN
 CALL ops.send_notification('Storage grew more than 10% in 24 hours');

-- Enable alerts
ALTER ALERT ops.long_running_query_alert RESUME;
ALTER ALERT ops.failed_query_alert RESUME;
ALTER ALERT ops.warehouse_queue_alert RESUME;
ALTER ALERT ops.storage_growth_alert RESUME;

3.2 Notification Procedure
-- Create notification stored procedure
CREATE OR REPLACE PROCEDURE ops.send_notification(message VARCHAR)
RETURNS VARCHAR
LANGUAGE JAVASCRIPT
AS
$$
 // Option 1: Log to table
 snowflake.execute({
 sqlText: `INSERT INTO ops.alert_log (alert_time, message)
 VALUES (CURRENT_TIMESTAMP(), ?)`,
 binds: [MESSAGE]
 });

 // Option 2: Call external function (webhook)
 // snowflake.execute({
 // sqlText: `SELECT external_notification_function(?)`,
 // binds: [MESSAGE]
 // });

 return 'Notification sent: ' + MESSAGE;
$$;

-- Create alert log table
CREATE TABLE IF NOT EXISTS ops.alert_log (
 alert_id NUMBER AUTOINCREMENT,
 alert_time TIMESTAMP_NTZ,
 message VARCHAR,
 acknowledged BOOLEAN DEFAULT FALSE,
 acknowledged_by VARCHAR,
 acknowledged_time TIMESTAMP_NTZ
);

3.3 Managing Alerts
-- View all alerts
SHOW ALERTS;

-- Check alert history
SELECT *
FROM TABLE(INFORMATION_SCHEMA.ALERT_HISTORY(
 SCHEDULED_TIME_RANGE_START => DATEADD('day', -7, CURRENT_TIMESTAMP())
))
ORDER BY scheduled_time DESC;

-- Suspend alert
ALTER ALERT ops.long_running_query_alert SUSPEND;

-- Resume alert
ALTER ALERT ops.long_running_query_alert RESUME;

-- Modify alert schedule
ALTER ALERT ops.long_running_query_alert SET SCHEDULE = '10 MINUTE';

-- Drop alert
DROP ALERT ops.long_running_query_alert;

4. Performance Monitoring
4.1 Query Performance Dashboard
-- Create performance monitoring view
CREATE OR REPLACE VIEW ops.query_performance_dashboard AS
SELECT
 DATE_TRUNC('hour', start_time) AS hour,
 warehouse_name,
 COUNT(*) AS query_count,
 AVG(total_elapsed_time) / 1000 AS avg_duration_sec,
 PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY total_elapsed_time) / 1000 AS median_duration,
 PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY total_elapsed_time) / 1000 AS p95_duration,
 PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY total_elapsed_time) / 1000 AS p99_duration,
 SUM(CASE WHEN execution_status = 'FAIL' THEN 1 ELSE 0 END) AS failed_count,
 AVG(queued_provisioning_time) / 1000 AS avg_queue_time,
 SUM(bytes_scanned) / POWER(1024, 4) AS tb_scanned
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY DATE_TRUNC('hour', start_time), warehouse_name
ORDER BY hour DESC, warehouse_name;

-- Warehouse utilization
CREATE OR REPLACE VIEW ops.warehouse_utilization AS
SELECT
 warehouse_name,
 DATE_TRUNC('hour', start_time) AS hour,
 SUM(credits_used) AS credits_used,
 COUNT(DISTINCT query_id) AS queries_executed,
 SUM(credits_used) / NULLIF(COUNT(DISTINCT query_id), 0) AS credits_per_query
FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY wmh
LEFT JOIN SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY qh
 ON wmh.warehouse_name = qh.warehouse_name
 AND DATE_TRUNC('hour', wmh.start_time) = DATE_TRUNC('hour', qh.start_time)
WHERE wmh.start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
GROUP BY warehouse_name, DATE_TRUNC('hour', wmh.start_time)
ORDER BY hour DESC;

4.2 Real-Time Monitoring
-- Currently running queries
SELECT
 query_id,
 user_name,
 warehouse_name,
 query_text,
 start_time,
 TIMESTAMPDIFF('second', start_time, CURRENT_TIMESTAMP()) AS running_seconds,
 execution_status
FROM TABLE(INFORMATION_SCHEMA.QUERY_HISTORY_BY_WAREHOUSE(
 WAREHOUSE_NAME => 'ANALYTICS_WH',
 RESULT_LIMIT => 100
))
WHERE execution_status = 'RUNNING'
ORDER BY start_time;

-- Active sessions
SELECT
 session_id,
 user_name,
 warehouse_name,
 TIMESTAMPDIFF('minute', created_on, CURRENT_TIMESTAMP()) AS session_minutes
FROM TABLE(INFORMATION_SCHEMA.SESSIONS())
ORDER BY created_on DESC;

-- Warehouse state
SELECT
 name,
 state,
 size,
 min_cluster_count,
 max_cluster_count,
 running,
 queued,
 auto_suspend,
 auto_resume
FROM TABLE(INFORMATION_SCHEMA.WAREHOUSES())
ORDER BY name;

5. Security Monitoring
5.1 Login Monitoring
-- Failed login attempts
CREATE OR REPLACE VIEW ops.failed_logins AS
SELECT
 event_timestamp,
 user_name,
 client_ip,
 reported_client_type,
 error_code,
 error_message
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY event_timestamp DESC;

-- Potential brute force detection
CREATE OR REPLACE VIEW ops.brute_force_detection AS
SELECT
 user_name,
 client_ip,
 DATE_TRUNC('hour', event_timestamp) AS hour,
 COUNT(*) AS failed_attempts
FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('day', -1, CURRENT_TIMESTAMP())
GROUP BY user_name, client_ip, DATE_TRUNC('hour', event_timestamp)
HAVING COUNT(*) >= 5
ORDER BY failed_attempts DESC;

-- Alert for suspicious login activity
CREATE OR REPLACE ALERT ops.suspicious_login_alert
 WAREHOUSE = alert_wh
 SCHEDULE = '15 MINUTE'
 IF (EXISTS (
 SELECT 1
 FROM SNOWFLAKE.ACCOUNT_USAGE.LOGIN_HISTORY
 WHERE is_success = 'NO'
 AND event_timestamp >= DATEADD('minute', -20, CURRENT_TIMESTAMP())
 GROUP BY user_name, client_ip
 HAVING COUNT(*) >= 5
))
 THEN
 CALL ops.send_notification('Suspicious login activity detected');

ALTER ALERT ops.suspicious_login_alert RESUME;

5.2 Privilege Monitoring
-- Recent privilege changes
SELECT
 query_id,
 user_name,
 role_name,
 query_type,
 query_text,
 start_time
FROM SNOWFLAKE.ACCOUNT_USAGE.QUERY_HISTORY
WHERE query_type IN ('GRANT', 'REVOKE')
 AND start_time >= DATEADD('day', -7, CURRENT_TIMESTAMP())
ORDER BY start_time DESC;

-- Users with ACCOUNTADMIN
SELECT
 grantee_name,
 role,
 granted_by,
 created_on
FROM SNOWFLAKE.ACCOUNT_USAGE.GRANTS_TO_USERS
WHERE role = 'ACCOUNTADMIN'
ORDER BY created_on DESC;

6. Data Quality Monitoring
6.1 Data Quality Checks
-- Create data quality monitoring table
CREATE TABLE ops.data_quality_results (
 check_id NUMBER AUTOINCREMENT,
 check_name VARCHAR,
 table_name VARCHAR,
 check_time TIMESTAMP_NTZ,
 status VARCHAR, -- PASS, FAIL, WARN
 metric_value NUMBER,
 threshold NUMBER,
 details VARCHAR
);

-- Data quality check procedure
CREATE OR REPLACE PROCEDURE ops.run_data_quality_checks()
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
DECLARE
 null_count NUMBER;
 duplicate_count NUMBER;
 freshness_hours NUMBER;
BEGIN
 -- Check 1: Null primary keys
 SELECT COUNT(*) INTO null_count
 FROM analytics.fact_sales
 WHERE sale_id IS NULL;

 INSERT INTO ops.data_quality_results
 (check_name, table_name, check_time, status, metric_value, threshold)
 VALUES ('NULL_PRIMARY_KEY', 'fact_sales', CURRENT_TIMESTAMP(),
 IFF(null_count = 0, 'PASS', 'FAIL'), null_count, 0);

 -- Check 2: Duplicates
 SELECT COUNT(*) - COUNT(DISTINCT sale_id) INTO duplicate_count
 FROM analytics.fact_sales
 WHERE sale_date = CURRENT_DATE() - 1;

 INSERT INTO ops.data_quality_results
 (check_name, table_name, check_time, status, metric_value, threshold)
 VALUES ('DUPLICATE_CHECK', 'fact_sales', CURRENT_TIMESTAMP(),
 IFF(duplicate_count = 0, 'PASS', 'FAIL'), duplicate_count, 0);

 -- Check 3: Data freshness
 SELECT TIMESTAMPDIFF('hour', MAX(load_timestamp), CURRENT_TIMESTAMP()) INTO freshness_hours
 FROM analytics.fact_sales;

 INSERT INTO ops.data_quality_results
 (check_name, table_name, check_time, status, metric_value, threshold)
 VALUES ('DATA_FRESHNESS', 'fact_sales', CURRENT_TIMESTAMP(),
 IFF(freshness_hours <= 24, 'PASS', 'FAIL'), freshness_hours, 24);

 RETURN 'Data quality checks completed';
END;
$$;

-- Schedule data quality checks
CREATE TASK ops.daily_data_quality_check
 WAREHOUSE = ops_wh
 SCHEDULE = 'USING CRON 0 7 * * * UTC'
AS
CALL ops.run_data_quality_checks();

ALTER TASK ops.daily_data_quality_check RESUME;

7. External Integrations
7.1 Webhook Integration
-- Create external function for webhook
CREATE OR REPLACE EXTERNAL FUNCTION ops.send_webhook(payload VARIANT)
 RETURNS VARIANT
 API_INTEGRATION = webhook_api_integration
 AS 'https://hooks.slack.com/services/xxx/yyy/zzz';

-- Notification procedure using webhook
CREATE OR REPLACE PROCEDURE ops.send_slack_notification(message VARCHAR)
RETURNS VARCHAR
LANGUAGE SQL
AS
$$
BEGIN
 SELECT ops.send_webhook(
 OBJECT_CONSTRUCT(
 'text', :message,
 'channel', '#snowflake-alerts'
)
);
 RETURN 'Slack notification sent';
END;
$$;

7.2 Export to External Monitoring
-- Export metrics for Datadog/Grafana
CREATE OR REPLACE TASK ops.export_metrics
 WAREHOUSE = ops_wh
 SCHEDULE = '5 MINUTE'
AS
COPY INTO @metrics_stage/warehouse_metrics/
FROM (
 SELECT
 warehouse_name,
 CURRENT_TIMESTAMP() AS metric_time,
 SUM(credits_used) AS credits_5min,
 COUNT(*) AS query_count_5min
 FROM SNOWFLAKE.ACCOUNT_USAGE.WAREHOUSE_METERING_HISTORY
 WHERE start_time >= DATEADD('minute', -5, CURRENT_TIMESTAMP())
 GROUP BY warehouse_name
)
FILE_FORMAT = (TYPE = JSON);

8. Best Practices
8.1 Monitoring ChecklistAreaWhat to MonitorPerformanceQuery duration, queue times, cache hitCostCredit usage, storage growthSecurityFailed logins, privilege changesData QualityFreshness, completeness, accuracyAvailabilityTask failures, warehouse status
8.2 Alert Thresholds
-- Recommended alert thresholds
/*
| Metric | Warning | Critical |
|--------|---------|----------|
| Query duration | 15 min | 30 min |
| Queue time | 10 sec | 30 sec |
| Failed queries | 5/hour | 20/hour |
| Failed logins | 3/hour | 10/hour |
| Storage growth | 10%/day | 25%/day |
| Credit usage | 75% budget | 90% budget |
*/

Document ControlVersionDateAuthorChanges1.02025-01-29Operations TeamInitial document
This document is maintained by the Operations Team.

